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Nova Acta Leopoldina NF 88, Nr. 332, 7-8 (2003)

Welcome Greetings

Benno PARTHIER (Halle/Saale)

President of the Academy

On behalf of the presidium of our academy I have the pleasure to welcome you to this
international Leopoldina Symposium here in Darmstadt. It has been scientifically and
locally organized by Friedrich BEck, Marc-Thorsten HUTT, and Ulrich LUTTGE in co-
operation with the Graduiertenkolleg at the Technical University — we enjoy the pre-
sence of President WORNER of the Technical University — and together with the “Junge
Akademie”, which is a creation by two parental academies, the Berlin-Brandenburg
Academy of Sciences and the Leopoldina Academy, and was founded two years ago in
2000. I think it is a very good opportunity both for the old and for the young academy to
organize together scientific events like this one.

Ulrich LUTTGE has been dreaming of the event of today for several years, as he has
told me last night. The result of his dream is a promising program filled up to the rim
with lectures and discussions about the topic “Nonlinear Dynamics and the Spatiotem-
poral Principles of Biology”. This is a basic biological topic consisting of theory, model-
ling and experiments, and therefore meets perfectly the character of the Leopoldina sym-
posia: interdisciplinarity. Our thanks are addressed not only to the colleagues who
organized this program, but are likewise directed to the speakers, who came to Darm-
stadt in order to help demonstrating this symposium as a scientific challenge of the Leo-
poldina Academy. You probably know that this oldest academy in German speaking
countries celebrates its 350™ anniversary this year. Celebrations started in Schweinfurt
in January and will continue in June in Halle with international academies as our guests.

This gives me a chance to tell you a few sentences about the foundation and history
of the Leopoldina Academy. It was founded by four physicians on January 1, 1652, in
the Free City of Schweinfurt. They named the society “Academia Naturae Curiosorum”
because they wanted to know more about what is the cause of sickness. The spiritual
rector was Laurentius BAUSCH who was inspired to found this academy by his peregri-
natio academia in Italy, where he visited the Accademia dei Lincei in Rome and the
Accademia Secretorum Naturae in Naples. Italy harboured quite a number of academies
at that time; most of them do not exist anymore, but the inspiration came from there and
designated the motto of the young academy as “nunquam otiosus”. It means “never be
idle” and has remained our motto up to date. From the Statutes (leges) of the Academy in
1662 1 would like to read the first sentence: “The glory of God, the enlightenment of the
art of healing and the benefit resulting from this for our fellow men be the goal and the
only guide of the Academy of the Natural Scientists.” This is also a challenge we have
faced until today. A very important point was that the Emperor of the Holy Roman King-
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dom of the German Nation, LEOPOLD I., recognized the academy in 1677 as the “Reichs-
akademie”. Ten years later, in 1687, he privileged the imperial academy, which acquired
the baroque name Sacri Romani Imperii Academia Caesareo-Leopoldina Naturae Curio-
sorum, but remaining is the abbreviation “Leopoldina”. The academy and its presidents,
respectively, received a number of remarkable privileges, including the right to award
academic degrees, to appoint public notaries and judges, to legalize illegitimate children
(as a source for getting money). However, the most important privilege was publishing
without censorship. This was important for the development of the academy. For more
than 200 years the site of the Academy shifted from one to another of 13 university
cities, and since 1878 it has been located in Halle, soon gained property there, and now
we have four buildings of our own and have built a new library.

Now I will briefly turn to the more recent time. In the last century we have suffered
under two dictatorships in Germany, the “Third Reich” and GDR socialism. The three
presidents in office were Emil ABDERHALDEN, Kurt MOTHES and Heinz BETHGE. Each of
them was an eager and successful president in saving the Leopoldina from being attacked
by both National and State’s Socialism, and each of them enhanced the Leopoldina’s inter-
national reputation. Especially president Kurt MOTHES (1954-1974) saved the academy as
both a politically and scientifically independent institution in the Eastern part of Germany.
After the reunification in 1990 a new era began also for the academy. Anything the Leo-
poldina performed in the GDR-period had to happen almost secretly behind the wall, but
thereafter the opposite has to be done. Many institutions and persons shed the light of ex-
pectations on this academy, and it should response in reflecting the light by activity.

Now a few dates about the present academy. It consists of about 1000 members be-
longing to 27 disciplinary sections. While during the 300 years of its history the academy
comprised only sciences and medical sciences, we decided to extent the disciplines of
our sections in the last few years, in order to approach a “real academy” in the eyes of
the sister academies and of the society. Thus we have included science theory, technical
sciences, empirical social sciences, as well as empirical psychology and cognitive
sciences as examples for new sections.

Since 1992 we have been funded through an annual budget of 1.5 Mio Euro jointly
provided by the Federal Government and by the Land Sachsen-Anhalt in a ratio of
80:20. Our activities comprise quite a number of scientific events, among them are the
annual meetings with hundreds of participants every two years. We organize symposia
like this one and meetings in a more concentrated form, and we offer, of course,
monthly lectures given by our members in the academy. The academy maintains its ac-
tivity also through 25 staff members in Halle, in order to run the large library, the ar-
chives, the administration. We edit two series of journals where our activities are pub-
lished, and we developed a promotional programme for junior post-doc scientists who
are motivated to work in research laboratories all over the world.

Now let us start another of our symposia. I thank the organizers once more for per-
forming this very interesting event here in Darmstadt.

Prof. Dr. Dr. h. c. Benno PARTHIER

Deutsche Akademie der Naturforscher Leopoldina
Emil-Abderhalden-Strafe 37

06108 Halle (Saale)

Germany
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From a Static to a Dynamic Description
of Living Systems: the Framework
(Comment)

Michel THELLIER (Mont-Saint-Aignan)

Historically, the study of life was first approached in an essentially static way. Living
species were considered to have been created once for all at the Origin and to have re-
mained unchanged since then; it was only with Charles DARWIN that the notion of evo-
lution was definitively imposed during the 19" century. Up to the discovery of blood
circulation by William HARVEY in the first half of the 18" century, the existence of
time-dependent processes in animal physiology was practically ignored. Even in recent
times, it is striking that molecular biology, however successful it has been, and still is in
a number of domains, offers a description of biological systems in which time is almost
always absent, or, more precisely, in which the dynamic features of the processes under
study are usually ignored. This is really paradoxical! By contrast with simple physical or
chemical systems, it is not possible to isolate a living system from exchanges (of heat,
energy and/or matter) with its exterior and let it evolve to internal thermodynamic equi-
librium. Attempts to do so cause the living system to be rapidly and irrevocably trans-
formed into a dead system: living systems are inseparable from their dynamical behav-
ior.

Endeavoring to unravel the underlying dynamic features of life thus represents an
almost entirely new goal for a still restricted number of scientists. There are several rea-
sons why such a dynamic approach is now possible, e. g., the existence of the immense
corpus of data previously accumulated by observational and experimental sciences (mo-
lecular biology and molecular genetics included), the fact that more and more coopera-
tive multidisciplinary groups or individual researchers with a double (theoretical and
biological) culture have taken an interest in the complex modeling of dynamical biologi-
cal events, and the increasing potential of numerical calculation using computers. At the
start of a new century, the international Leopoldina symposium about ‘“Nonlinear dy-
namics and the spatiotemporal principles of biology” thus may be considered to repre-
sent a stage in this newly emerging development to the phenomenon of life. In our pre-
sent “Framework” session, much attention has been paid to “noisy” systems (BALAZSI
and Moss 2003, HANGGI et al. 2003) and to the dynamic behavior of biological net-
works, especially nerve networks (SINGER 2003, BALAzs1 and Moss 2003, see also the
many original references quoted in these review contributions).

Noise, contrary to the conventional viewing of it as a mere nuisance altering signal
purity, is now seen as an indispensable component of fundamental living processes.
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Among various other aspects (such as electron transport in DNA, migration of ligands in
proteins or protein folding), “cell motors” and “stochastic resonance” have been shown
to be of particular relevance to biology.

Material transport within cells and other cases of motion (cytoplasmic streaming,
chromosome rearrangement during cell division, plant chloroplast reorientation in light,
actin/myosin interactions, cell locomotion, etc.) occur permanently at the subcellular and
cellular levels. In most cases, the proteinaceous and other molecular components of the
cell motors are well known as well as the exergonic processes energizing them (ALBERTS
et al. 1983). How the dynamic functioning of such motors is actually achieved was still
to be understood. In the first talk of this session (HANGGI et al. 2003) it was shown how
movements, such as those of kinesin molecules transporting cargo along the microtu-
bules or those of muscle contraction via actin/myosin interaction, could be understood
by a generalization of the “temperature-Brownian motor” scheme. In the latter model
system, particles immersed in a viscous medium and submitted to alternatively low and
high temperature values in an asymmetric saw-tooth potential, tend to progress, in a di-
rection imposed by the potential asymmetry, as a consequence of their random, noisy
diffusion at the high temperature while they are trapped in the intervals between the
saw teeth at the low temperature. In real cellular systems, energy is provided via cou-
pling to exergonic reactions, such as ATP hydrolysis, instead of the mechanism respon-
sible for the temperature changes in the model system; but, although the detail of the
functional steps involved is not always clearly understood yet, the random fluctuation
of molecules or molecular heads at some stage of the process is an unavoidable requisite
for producing the movement.

For its survival, an animal has to be sensitive to signals from its environment, espe-
cially those allowing it to detect the presence of a prey or a predator. In some cases,
evolution has selected extremely sensitive sensory mechanisms, such as the electric
field sensitivity of sharks, rays, catfish and paddlefish, or the crayfish sensitivity to
weak mechanical stimuli (BALAzsI and Moss 2003). At least in some cases, it seems
that the phenomenon of “stochastic resonance” (BALAzsi and Moss 2003, HANGGI
et al. 2003) can enhance the detectability of weak signals. Briefly, a pure signal (e.g. a
propagating wave) cannot be detected if it is below the threshold of detection; if the
signal is slightly noisy, this will not change the result; with a stronger noise, the thresh-
old may be reached and the signal thus detected (which is especially likely at the level of
the signal maxima); with an even more intense noise, the detector will eventually get
saturated. In consequence, the curve representing the “signal/noise ratio” as a function
of the noise intensity will be negatively curved and exhibiting a maximal value at a me-
dium value of the noise intensity. Such a behavior may be taken as the signature of the
manifestation of stochastic resonance. A set of experimental data is consistent with sto-
chastic resonance actually playing a part in signal detection in various animal systems
(BaLAzs1 and Moss 2003), which would mean that “Mother Nature has adapted, during
evolution, to use intrinsic ambient noise for the optimization of sensory transduction”
(HANGGTI et al. 2003).

The components involved in a living process at all levels of organization are often
arranged in a network. The effect of noise in such network systems was discussed by
BaLAzst and Moss (2003). By considering model systems made of a network of
coupled noisy elements (such as a network of threshold detectors), it has been shown

12 Nova Acta Leopoldina NF 88, Nr. 332, S. 11-15



From a Static to a Dynamic Description of Living Systems: the Framework (Comment)

that noise-enhanced propagation of coherent structures may occur, which has been
termed “spatiotemporal stochastic resonance”. For instance, Ca* spiral waves can be
nucleated spontaneously, propagate some distance and finally die in the noise in a net-
work of cultured glial cells. The fascinating question whether such “noisy network”
effects may have a role in information processing and consciousness in the brain, has
begun to be approached via various sorts of observations and experiments on human
perception and animal behavior.

Apart from these considerations about the possible role of noise, a combination of
theoretical reasoning and experimental evidence has begun to shed new light on the
way neurones interact with one another to represent objects (SINGER 2003). It was
known that permanent hierarchical structures exist in which (i) “first-order” neurones
respond to the elementary components of an object under observation, (ii) several of
these first-order neurones are connected to a ‘“second-order” neurone which then re-
sponds to the corresponding, specific conjunction of elementary components, (iii) sev-
eral of these second-order neurones may be connected to a “third-order” neurone, and
so on. Clearly, such a “smart” system of neurones can be effective in representing items
that occur frequently and/or are of particular behavioral importance; however, such a
system is poorly adapted to the representation of unexpected or novel objects or of com-
plicated and context-dependent combinations of objects. In these latter cases, it was re-
vealed to be more likely that perception is achieved by the interplay of co-operatively
interacting neurones that can participate at different times in different assemblies de-
pending on the task to be carried out (which has the advantage to greatly economize
the number of neurones required for accomplishing the different successive tasks).
Among various possibilities that can be envisaged for permitting such transient, dy-
namic associations of subsets of co-operative neurones, synchronization of responses
has revealed to be the most likely mechanism assuring that the responses of neurones
that constitute an assembly are processed together and not confounded with other, unre-
lated responses. This is supported by a variety of observations, especially by the finding
that the simultaneous recording of discharge from numerous neurones reveals close cor-
relation between the synchronization of cortical neurones and behavioral responses. An-
other advantage of synchronization is that it can be established and dissolved very
rapidly, thus permitting the nervous system to switch from one task to another with
short delay.

For a general discussion about synchronization, see also the contribution by Pikov-
SKY (2003) in another session of the same symposium, and for an example of the way
how cells can become electrically synchronized see for instance data from my own
group (LASSALLES et al. 1980, 1981, LETELLIER et al. 2002).

At the sub-cellular level, it has been observed that molecules (especially proteins)
involved in a given task (e.g. metabolic pathway or signal transduction) often bind to
one another, thus establishing transient functional multimolecular structures (see e. g.
MowBRAY and MoOSEs 1976, SRERE 1987, HRAZDINA and JENSEN 1992, LETOFFE et al.
1996, MITCHELL 1996, TorsHIN 1999, JORDAN et al. 2000, MORIN-GANET et al. 2000,
PerTY and KinDZELSKII 2001, PRESLEY et al. 2002, RAMBOURG et al. 2002). Such tran-
sient associations, which are created and maintained by the fact that the system is func-
tioning and which consequently tend to optimize the functioning of this system, have
been termed “metabolons” in the case of metabolic pathways (VELOT et al. 1997, NORRIS
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et al. 1999), “transducons” in the case of signal transduction (TREwWAvVAS and MALH
1997) or, more generally, “hyperstructures” (NORRrRIS and FisHov 2001, AMAR et al.
2002, NoreIs et al. 2002); and we have begun to model and study the dynamic behavior
of hyperstructures (LE SCELLER et al. 2000). The above concept that functional architec-
tures of neuronal connections are not necessarily permanent but may also undergo mod-
ifications in a use-dependent way (SINGER 2003), thus appears to be a striking equiva-
lent, at the intercellular level, of the original subcellular notion of hyperstructure.

A lot of detailed and stimulating information will be found in the three papers corre-
sponding to the talks given in this first session (BALAzsI and Moss 2003, HANGGI et al.
2003, SINGER 2003). I would like to end my brief presentation of these contributions by
two remarks that seem to my group and me to be of importance for biology. First, con-
sidering the dynamics of a process is not necessarily restricted to following the time-
course of this process; cases exist in living systems in which a dynamic behavior, noise
included, is constitutive of the process under consideration. Second, beside the tradi-
tional “structure — function” couple which was introduced by biochemists to state that
they were interested in determining the specific function of each molecular structure
which they were discovering, we should now also consider a “function — structure”
couple, meaning that living processes exist, at the subcellular and intercellular levels, in
which transient operative structures are created and maintained by the very fact that they
are accomplishing a function.
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Abstract

Biology and physics share common ancestors. The progress of methods of statistical physics and the devel-
opments of new physical tools and various ingenious experimental techniques have triggered dramatic prog-
ress for the field of biophysics. Likewise, the two fields fertilized each other repeatedly over the last dec-
ades. Most importantly, the complexity of biophysics inspired new developments in physics and chemical
physics. In this contribution, we focus on some recent problems that attracted the interest of many statistical
physicists. Biological cells contain nanoscale machineries that exhibit a unique combination of high effi-
ciency, high reliability and recognition features and self-assembly properties. Most importantly, these
biological machines transport material and perform work in a noisy environment. Here, we will elaborate on
the constructive role of noise for the amplification and enhanced detection of weak information-carrying
signals (Stochastic Resonance in Biology) and directed transport of vesicles and the like (Brownian Motors
in Biology). Quantum statistical physics enters the biological complexity at the interface of electronic trans-
port processes and the interaction with light. In this context, physicists and chemists have become increas-
ingly interested in the electronic properties of the “molecule of life”, the DNA. We will comment on the
present hot debate whether quantum electronic transport in DNA behaves more like a good molecular wire
or whether DNA behaves more like an insulator.

Zusammenfassung

Die beiden Naturwissenschaften Biologie und Physik teilen gemeinsame Interessen: In den letzten Jahrzehn-
ten konnten sich beide Disziplinen immer wieder gegenseitig stimulieren. Der Fortschritt der Biophysik pro-
fitiert in hohem Malie von den Methoden der statistischen Physik und von neuen physikalischen Entwicklun-
gen und Technologien. Umgekehrt inspirierte die Vielseitigkeit der Biophysik neue Richtungen in der
Physik und der physikalischen Chemie. In diesem Artikel konzentrieren wir uns auf aktuelle Probleme, die
insbesondere unter statistischen Physikern auf ein reges Interesse gestoien sind: Wenige Nanometer grofie
Proteine fungieren in biologischen Zellen als Maschinen und vereinigen dabei eine einzigartige Kombina-
tion von hoher Effizienz, hoher Zuverlissigkeit und der Fihigkeit zur Selbstorganisation und Steuerung. Sie
transportieren biologisches Material und verrichten physikalische Arbeit in einer thermisch verrauschten
Umgebung. Die konstruktive Rolle des Rauschens fiir die Verstirkung und Detektierung schwacher Signale
(Stochastische Resonanz in der Biologie) und fiir den gerichteten Transport (biologische Brownsche Moto-
ren) werden diskutiert. Die Beschreibung des elektronischen Transports oder der Wechselwirkung mit Licht
erfordert sogar quantenphysikalische Ansitze in der Biologie. So interessieren sich Physiker und Chemiker
fiir die elektronischen Eigenschaften des »Molekiils des Lebens«, der DNA. In diesem Zusammenhang soll
auf die heif} gefiihrte Debatte eingegangen werden, ob der quantenmechanische elektronische Transport in
DNA sich wie in einem guten molekularen Draht oder eher wie in einem Isolator verhilt.
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1. Introduction

The field of biology underwent dramatic changes in recent years. With the progress and
development of new experimental techniques the areas of modern biology and modern
physics have fertilized each other repeatedly. One such area involves high-resolution mi-
croscopy techniques: Starting from the invention of a first microscope by Zacharias JANS-
SEN (1588-1630), and the first documentation in form of a book by Robert HOOKE
(1635-1703) the first high resolution microscope was built by the Dutchman Antoine
VAN LEEWENHOECK (1632-1723). His invention led him to observe bacteria and other
micro-organisms. The early 19th century brought further progress with prominent input
from Physics. It was the theory of microscopic resolution by Ernst ABBE (1840-1905), in
particular his insight into improving resolution via a high “numerical aperture” (n sin a;)
by use of a high refraction index material which enabled considerable further progress.
The modern age of microscopy arrived with the development of the electron microscopy
by Ernst Ruska (1906-1988) in 1932. This instrument has a resolution of ca. 50 nm, i.e.
it became possible to gain insight into the architecture of individual cells and proteins.
Finally, the progress culminated with the construction and working of the scanning tun-
neling microscope (STM), that can provide atomic resolution, by the pioneers Gerd BiN-
NIG and Heinrich ROHRER at IBM during the portentous night of march 16, 1981. The
further efforts focused on atomic size imaging techniques for insulating materials. The
result has been the construction of the atomic force microscopy (AFM) by BINNIG
et al. (1986).

Another root to the progress of molecular biology involves Brownian motion theory
as pioneered independently from each other by Marian VON SMOLUCHOWSKI and Albert
EINSTEIN. SMOLUCHOWSKI has been working passionately on the theory of Brownian
motion since 1900. He, however, delayed the publication of his theoretical findings be-
cause he also planned experiments to verify his calculations. After seeing EINSTEIN’S
(1905) paper in the Annalen der Physik he consequently also published his results in
1906 in the same journal.

It is fair to say that Brownian-motion-related phenomena have decisively stimulated
many new developments and advances for statistical physics over the last fifty years. As
a matter of fact, the field is still very much alive with pioneering contributions covering
the physics on the micro-scale and even the nanoscale in situations where novel physics
on the quantum level and /or far from thermal equilibrium are ruling the transport behav-
ior.

One of the greatest challenges in the field of molecular biophysics involves the eluci-
dation of the principles by which the nanoscale machineries in biological cells perform
their work with such high efficiency, high adaptability to changing environmental condi-
tions and high reliability. Above all, these biological motors must perform all of these
functions in the face of inescapable thermal noise that is often much greater than the
energy input that we can use to direct their operation. For this reason many physicists
are working to understand the elementary mechanisms by which biological motors oper-
ate. An important insight is that thermal noise is most likely incorporated as an essential
element for controlled motion by biological motors, giving rise to the term Brownian
Motor (BARTUSSEK and HANGGI 1995, HANGGI and BARTUSSEK 1996, ASTUMIAN 1997,
JULICHER et al. 1998, REIMANN and HANGGI 2002). For a most comprehensive review,
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which in addition provides a wealth of references for this timely research area, we refer
the interested reader to the recent oeuvre by REIMANN (2002).

From everyday experience, noise is usually thought of as the enemy of order rather
than as a constructive influence. In nonlinear systems that possess some sort of thresh-
old, however, random noise can assume a beneficial role in enhancing the detection of
weak sensory signals. This phenomenon, termed Stochastic Resonance (Moss 1991,
WIESENFELD and Moss 1995, GAMMAITONI et al. 1998, HANGGI 2002) does find useful
applications in physical, biological and biomedical contexts. Certain biological systems
may even use this effect for optimizing function and behavior (see below).

Statistical quantum physics enters such prominent biological areas as photosynthesis.
Clearly, the laws of quantum electron-transfer dynamical processes do in fact determine
the mechanism by which sun light is harvested by cells. Most importantly, the structure
of proteins and particularly the molecule of life, DNA, which plays a pivotal role as the
carrier of genetic information in all living species do obey the laws of quantum me-
chanics. The structures are by no means fixed but do wobble and shake due to the influ-
ence of thermal and non-thermal noise forces. In this context, the question of charge
transport in DNA has attracted much enthusiasm within the scientific communities of
physics, chemistry and biology. Notably, the potential of DNA with its unique assembly
properties, unparalleled recognition features, stability, adaptability and optical qualities
together with its electronic properties are far too tempting for not being considered as a
prime species for molecular electronics (DEKKER and RATNER 2001).

In the following we elucidate the useful and serviceable role of statistical physics for
the description of three salient problems of biocomplexity: These are the phenomena of
Brownian motors in biology (Section 2), the phenomenon of Stochastic Resonance (SR,
Section 3) and the issue of electronic motion in DNA (Section 4).

2. Brownian Motors in Biology

Parallel to the impressive progress in nanotechnology and the advances in the study and
manipulation of small scale biological systems we can witness a tremendous activity in
the theoretical understanding of small-scale non-equilibrium transport devices, including
a discussion of both the fundamental issues and the limits of the application of the sec-
ond law of thermodynamics (HANGGI and BARTUSSEK 1996, ASTUMIAN 1997, JULICHER
et al. 1998, REIMANN and HANGGI 2002, REIMANN 2002). Brownian motors and Sto-
chastic Resonance have been at the forefront of this new scientific wave; this is mainly
due to their intimate connection from the viewpoint of the physics which is at work in
these corresponding biological problems.

2.1 Brownian Motor: Proof of Principle

Following the reasoning of REIMANN et al. (1996) a simple example of a Brownian motor
is depicted in Figure 1, where micron sized particles move on an asymmetric saw-tooth
etched structure, e. g., on a glass slide. Because of the asymmetry of the structure, fluctua-

tions in time between cold and hot temperature cause the particles to move, on average, to
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the right. In accordance with the second law of thermodynamics we note, however, that the
net transport is zero whenever the temperature is held fixed. The directed motion arises
because the cycling in time between cold and hot feeds energy into the system from a
hot reservoir and dissipates it to a cold reservoir. In the example, the particles are the
“motors” — the elements that undergo directional translation. The fuel is the energy sup-
plied by heating and cooling the device. This simple model in Figure 1 illustrates the
three main ingredients necessary for a “Brownian motor” (HANGGI and BARTUSSEK 1996,
ASTUMIAN 1997, REIMANN and HANGGI 2002): (i) symmetry breaking, (ii) energy input,
and (iii) thermal noise. Without any one of these the Brownian motor mechanism fails.

Cold

Fig. 1 Following the temperature-Brownian motor scheme by REIMANN et al. (1996) we consider non-in-
teracting particles in a viscous medium moving on an asymmetric saw-tooth potential of period L and height
V subject to a temperature that fluctuates in time between “hot” and “cold” (T € T4 Thor)- For simplicity
let V/(kg Thor) << 1, and V/(kg T,,1q) >> 1. The dashed line indicates the level 2 kzT below which ca. 95 % of
the particles are found at any given time. When the temperature is cold, the particles are pinned at a poten-
tial minimum. Then, when the temperature is increased, the particles effectively do not “feel” the potential
and begin to diffuse. When the temperature is cold again, any particles that have diffused the short distance
aL, with a <4, to the right are caught in the well to the right, any particles that have diffused the long dis-
tance (/—a)L towards the left are caught in the well to the left, and the rest are pinned again in the original
well from which they started. Because the chance for a particle to diffuse the short distance aL during the
time when the temperature is hot is much greater than the chance to diffuse the long distance (/—a)L, net
motion to the right is induced by strong temperature fluctuations. Optimally the system should remain hot
long enough for the particles to diffuse the short distance, but not the long distance. The time in the cold
state is less critical since pinning the particles is a predominately deterministic process that will be much
faster than the diffusive motion.
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The scheme in Figure 1 mimics a Brownian motor first proposed by BuG and BERNE
(1987) working at Columbia University in New York and AipARI and Prost (1992)
working at the ESPCI in Paris; see also JULICHER et al. (1998). The latter researchers
in Paris envisioned a situation where turning on and off an asymmetric electric poten-
tial would provide a means for separating particles based on diffusion coefficients
yielding a so called flashing Brownian motor device. Such a scheme has been real-
ized experimentally in several different ways (REIMANN 2002). A most pivotal fea-
ture is the rectification property of such Brownian motors. For any fixed temperature
and an external negative tilt, the particles will move downhill on average. The nu-
merically evaluated load curve, see Figure 2, instead depicts that the opposite is true
within an entire interval of negative bias forces when additionally the device is now
periodically cycled between two temperatures: Surprisingly indeed, the particles are
moving uphill on average, thereby performing work against an external load. In parti-
cular, a finite velocity results at zero external load force. Moreover, one needs a finite
negative force, the so termed stall force, before the average directed motion comes to
a standstill.

0.04 T T T T T T

<X>

-0.02 . c .
-0.04 -0.02 0 0.02

F

Fig.2 Numerically determined time- and ensemble-averaged particle current in the long-time limit versus
an external applied constant force for a temperature-Brownian motor depicted in Figure 1. Notwithstanding
a not too large force pulling the particles to the left, the particle move uphill towards the right side. At a fi-
nite negative force, the so-called stall force, the average directed motion of the particle becomes reversed.
After REIMANN and HANGGI (2002).
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2.2 From Brownian Motors to Molecular Motors

The principle of such Brownian motor physics is seemingly at work for molecular mo-
tors. Nature uses both, linear and rotary molecular motors that transport a variety of bio-
logical cargo and propel cells. This rationale of molecular motors in biology is wide-
spread: It is known that such motors drive the replication of DNA, its transcription into
messenger RNA as well as, e. g., the injection of DNA into bacteria by bacteriophage
(BusTAMANTE et al. 2000). The latter motor is the strongest presently known molecular
motor: It stalls at an amazingly large force of 55 pico-Newton. Yet another astounding
rotary motor is the ATPase synthease (the enzyme that uses the H*-gradients to produce
adenosin triphosphate (ATP) — the energy source that powers most molecular motors)
which turns at a speed of up to around 4 Hz generating up to 3 ATP molecules per revo-
lution. Notably, we produce and consume every day about half of our body weight in
ATP. In all these cases the thermal fluctuations are truly tumultuous and are readily used
in pushing stochastically particles over activation barriers. All these motors work in a
strong viscous medium (very low Reynolds numbers), i.e., the stochastic motion is
strongly overdamped: The situation that cells and bacteria meet is that of a human swim-
ming in very sticky honey. This is also why nature has optimally solved the problem of
locomotion under such conditions by use of motors that employ a rotating helical tail, or
beating flagella.

In the following we discuss only linear motors, cf. Figure 3, which move tangentially
along a periodic structure of cytoskeletal filaments. The motor proteins are divided into

A

microtubule

myosin B

actin

Fig. 3 Sketches of microtubules and actin filaments from the basic scaffolding of cells are depicted. The
motor proteins kinesin and myosin are responsible for material transport and muscle motion. (A) A kinesin
molecule transports cargo along the microtubules by alternate binding and unbinding of the two heads.
(B) Muscle contractions are caused by aggregated myosin molecules. The motor heads of the myosin fila-
ment can bind to the actin filaments. Unbound heads fluctuate freely around their equilibrium positions. By
preferentially binding at an angle in a forward direction directed motion occurs.
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families by sequence similarities. Myosin-II and myosin-V motors move on actin fila-
ments and operate the contraction of muscles; kinesin and dyenin motors transport car-
go along microtubules. These proteins use the chemical energy obtained from the hydro-
lysis of ATP which is then transformed into mechanical work by the assistance of
tempestuous thermal fluctuations. As such the motion becomes a stochastic process,
and the key issue in this scenario refers to the problem of the strength of coupling be-
tween chemical and mechanical degrees of freedom in this non-equilibrium stochastic
process. Important challenges address issues such as (i) the role of weak versus a tight
mechano-chemical coupling, (i) what is the average energy input per cycle, (iii) what is
the efficiency, and (iv) what is the degree of cooperativity among the motors in the pro-
cess of directed transport.

First ideas of how molecular motors work were put forward by Sir Andrew HUXLEY
(1957) in his landmark paper on the contraction of muscles, cf. Figure 3(B). It idealizes
the myosin-II heads being anchored in the myosin filaments of a sarcomer as harmonic
springs with two states. In the bound state the motor heads form a crossbridge between
the neighboring myosin and actin filaments; in the unbound state the heads fluctuate
freely around their equilibrium positions. Directed motion now occurs when the head
binds preferentially at an angle in a forward direction and unbinds after completion of
the work. Binding of the head is followed by a backward shift of the actin filament.
These spatially asymmetric binding and unbinding rates consequently rectify the ther-
mal fluctuations of the motor head, i.e., this model is an example for a Brownian mo-
tor. The myosin-II motors are so termed nonprocessive motors with a small duty ratio.
The latter refers to the ratio of the average time spent in the bound state and the bound-
plus-unbound time interval. Being so, the myosin-II motors must work in groups in order
to perform the task. In turn, this feature allows for a fast contraction in response to an
external load. A molecular motor that walks over long distances before it detaches and
gets lost, possesses consequently a high duty ratio; such motors, like kinesin or myosin-
V are termed processive. The stochastic nature of the motors is a key ingredient allowing
for asymmetric forward versus backward rates; indeed, thermal noise is truly essential in
overcoming the various activation steps (HANGGI et al. 1990). The cooperativity of motor
molecules has far reaching consequences: the statistical mechanical treatment of the cou-
pling among the motors can give rise to fascinating phenomena such as phase transitions,
normal and anomalous hysteretic behavior, absolute negative mobility and spontaneous
oscillatory behaviors, to name but a few (JULICHER et al. 1998, REIMANN 2002).

The walking of the processive motor kinesin mimics closely the Brownian motor
scenario depicted with Figure 3(A). The microtubule is built up periodically with the
constituent protein “tubulin”. This is a dimer consisting of two quite similar globular
proteins, a-tubulin and B-tubulin about 4 nm in diameter and 8 nm long. This asym-
metric structure mimics the asymmetric potential profile in Figure 1. Each two-headed
kinesin comprises a microtubule binding site as well as an ATP-binding site, termed the
ATP-binding pocket, see Figure 3(A). Each head can bind and hydrolyze ATP on its own.
The chemical reaction cycle consists of the following main four steps. Step I: the motor
is interacting with the environment and is attached to the microtubule at a B-tubulin bind-
ing site with no ATP bound to the ATP-pocket. Step 2: The head binds one ATP out of
the environment in its ATP-binding pocket. Step 3: The ATP is broken up into adenosine
diphosphate (ADP) and inorganic phosphate (the power stroke). In doing so, ca. 20 kT
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are gained in energy. Step 4: The inorganic phosphate is for a short time (thus implying a
high duty ratio) released from the ATP-binding pocket and at the same time the kinesin
motor typically detaches and undergoes Brownian motion, cf. the second part in Fig-
ure 1. Transition into state 1: ADP is released. The affinity to the binding site increases
with the result that after some free diffusion one head will bind preferentially in forward
direction again to the microtubule. Typically, a kinesin motor can cover a distance of a
few um with a velocity of ca. 1 um/s at 10 mM ATP concentration before it looses con-
tact with the microtubule filament. Therefore, a single kinesin molecular motor makes
hundreds of unidirectional 8-nanometer steps without detaching from, or freely sliding
along the microtubule on which it moves (processive motor). Moreover, it possesses a
stall force of ca. 5 pico-Newton. Note also that the two heads coordinate their actions:
One head always stays attached and the power stroke energy release of the front head
seemingly triggers the rear head to swing forward. How does the forward motion take
place? Is it in a hand-over-hand like fashion or more like that of an inchworm (or a ca-
terpillar)? Very recent experiments (HuA et al. 2002) seem to favor an inchworm-like
scenario. This would disprove the previously accepted picture that the enzyme’s two
heads alternately and symmetrically step over each other along the microtubule. Yet,
there are still some other schemes thinkable which are still consistent with the present
experimental knowledge (ASTUMIAN and DERENYI 1999). In any case, the Brownian mo-
tor mechanism is at work in all these different mechanisms.

Modern statistical physics clearly is able to provide the necessary tools to describe
such non-equilibrium biological transport in terms of Brownian motion theory within
coupled flashing potential landscapes (HANGGI and BARTUSSEK 1996, ASTUMIAN 1997,
JULICHER et al. 1998, REIMANN 2002). Clearly, the mere use of a rate description already
implies that noise-activated escape events do play an important role in biological trans-
port mechanisms; i.e., a pure deterministic picture can never fully cover the complete
story behind microbiological locomotive schemes.

3. Biological Stochastic Resonance

In everyday life, noise is generically viewed as being of harmful influence in detecting
and transferring information. In contrast, Stochastic Resonance (SR) (Moss 1991, 1994,
WIESENFELD and Moss 1995, GAMMAITONI et al. 1998, HANGGI 2002) refers to a situa-
tion where the mere addition of random noise to the dynamics improves a system’s sen-
sitivity to discriminate weak information carrying signals. Thus, this phenomenon con-
stitutes yet another example where random perturbations play a beneficial role. Because
of its generic nature, this phenomenon boasts universal applications extending from clas-
sical and quantum physics to chemistry, engineering, and in recent years, also in biology
and biomedicine.

3.1 Introduction to SR

The mechanism of SR works as follows: Consider a particle sitting in one well of a sym-
metric double well potential — let us say, a marble in an egg carton. A gentle force (per-
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iodic or aperiodic) tilts the whole system forth and back. This perturbation may be
looked upon as an information carrying signal that is acting on the nonlinear system.
Under the influence of this weak force the marble simply rolls around in the bottom of
the well. Now, if its movement is detected only when it jumps into the neighboring well,
this weak signal will go unnoticed. Adding noise to the system — by rocking randomly
the egg carton up and down — will, a priori, only mask the weak perturbation further. In
fact, however, under some suitable conditions just the opposite is true. The weak signal
together with the noise will allow the ball to occasionally exit into the neighboring well.
Now the theory of SR (GAMMAITONI et al. 1998) says that these exit events do not occur
completely at random, but become correlated with the weak signal. An increasing noise
level — correlated with the input signal — enhances the chance for excursions over the
barriers. Since these large jump events dominate the response of the system, the small
input signal is enlarged. One the other hand, too much noise will deteriorate the coher-
ence of the signal assisted, noise-induced crossings. These barrier-crossing events expose
an element of nonlinear system dynamics by which random noise can benefit faint sig-
nals by boosting them in a correlated manner over a threshold. The noise-enhanced out-
put response is, therefore, fairly regular with only small fluctuations. From this perspec-
tive we find that SR is a cooperative phenomenon in which a weak, coherent input
entrains ambient noise.

A typical characteristic of SR consists in its anomalous amplification of input signals
by noise. The response itself serves thus as a natural measure of SR. In particular, for a
periodic input signal the spectral power amplification (JUNG and HANGGI 1989, 1991)
evaluates the ratio between the spectral power of the output at the driving frequency
and the total power of the input signal. This amplification criterion undergoes a reso-
nance-like behavior: it increases versus increasing noise intensity (regime of SR) until
it reaches an optimal maximum, and then falls off; hence the term SR, see Figure 4.
The spectral power amplification quantifier also yields a criterion of synchronization
between the input signal and the noise-activated output dynamics. Note that the effect
of SR is not a resonance phenomenon for the rate of the weak signal and noise-assisted
escape dynamics: The time-averaged rate increases monotonically with both, increasing
noise strength and perturbation intensity. Moreover, as a function of increasing driving
frequency this time-averaged rate of escape starts out from a plateau-behavior and then
decreases monotonically; i. e., no common resonance peak feature is detected for the rate
of escape, see JUNG and HANGGI (1989) and JUNG (1989). Another common approach to
characterize SR is the signal-to-noise ratio (SNR) (MCNAMARA and WIESENFELD 1989).
This latter quantity is formed from the ratio obtained from the output spectral power at
the driving frequency and the background power spectrum, multiplied by the experimen-
tal bin-width, of the driven stochastic dynamics at the driving frequency. Unlike the
spectral power amplification, however, this quantifier does, in leading order of the sig-
nal strength, not depend on the driving period; consequently, it cannot be related to a
synchronization measure. Another indirect measure of SR, which is often used by biolo-
gists, is the residence time probability distribution or inter-spike interval histogram. The
corresponding measure is composed of a set of separated peaks that vary in width and
separation upon increasing the noise intensity. Moreover, the characterization of noise-
assisted transduction of realistic, broad-band type biological input-signals typically ne-
cessitates the introduction of complexity measures that are based on entropy related con-
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Fig.4 Threshold stochastic resonance: (A) Neuronal-like dynamics detect those events that rise above
some threshold value (the thin top line). A weak, periodic subthreshold signal (thick line) can therefore be
detected only if its dynamics are assisted by noise (noisy trace). A crossing event occurs most likely when
the weak signal assumes its peak value. (B) Upward-directed crossing events trigger a firing of spike-train
dynamics, u(t). (C) The power spectrum S (v) of the output dynamics is depicted on the left-hand side;
superimposed on a typical broadband background the spectrum features sharp peaks at multiples of the driv-
ing frequency vy. The spectral power amplification, see the right-hand side in part (C), exhibits the typical
SR signature of a bell-shaped resonance versus increasing noise intensity D. The peak value is assumed at
an optimal dose of noise for which the periodically modulated threshold crossing rate approximately syn-
chronizes the signal with the firing events.
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cepts, like the mutual information, the Kullback entropy, the rate of information gain and
diverse cross-correlation measures (GAMMAITONI et al. 1998, ANISHCHENKO et al. 1999,
HANGGI 2002).

Since its discovery in early 1981, the phenomenon of SR has been demonstrated re-
peatedly with diverse applications in chemistry, physics and the technical sciences
(GAMMAITONTI et al. 1998). SR in biology started with benchmark publications in the
early nineties wherein the authors discovered SR in sensory neurons that have been sub-
jected to external noise (BULSARA et al. 1991, LONGTIN et al. 1991, CHIALVO and APKA-
RIAN 1993). In a series of experiments the group of Frank Moss (DOUGLAS et al. 1993,
WIESENFELD et al. 1994, PEI et al. 1996) and several other groups as well, convincingly
established the effect of SR in a variety of biological systems (HANGGI 2002).

Sensory neuronal systems are ideally suited to exhibit SR: they are intrinsically noisy
and they do operate as threshold systems, cf. Figure 4. In these neuronal systems a prop-
agating action potential upon reaching the threshold triggers a firing (voltage) spike,
which is being followed by a quiescent time interval during which no firing events oc-
cur. In this context, a prominent question concerns the role of the internal noise of the
sensory systems. Moreover, does the biological system intrinsically use noise-enhanced
signal detection, via SR, to optimize its operational function? A promising first evidence
that SR occurs with internal noise has been shown by PEI et al. (1996) where the internal
noise may be varied by altering the light intensity that falls on the photoreceptive areas
of crayfishs’ hair cells which sense hydrodynamic flows.

3.2 Biological SR on the Subcellular Level: SR in lon Channels

Ever since the discovery of SR, the Holy Grail of biological SR-related research has
been the validation of the premise that mother nature has adapted, during evolution,
to use intrinsic ambient noise for the optimization of sensory transduction on its most
fundamental level: the ion channels. Presumably, SR has its origin in the stochastic
properties of ion channel clusters that are located inside a receptor cell membrane.
For an artificial system of ion channels which is composed of a parallel array of the
peptide alamethicin, BEZRUKOV and VobpyaNoy (1995) have found evidence that SR
does in fact occur. This result provokes the challenge whether SR in biology is rooted
as a collective effect in finite assemblies of natural ion channels or whether SR can
occur already within a single ion channel. In recent work, however, it was demon-
strated theoretically that SR in a single Shaker potassium channel can indeed occur if
the parameters for operation are located within a regime where the channel is predomi-
nantly dwelled in the closed state (GoyCHUK and HANGGI 2000). This result is not only
of interest on its own, but also impacts prominent applications that involve manipula-
tions on the nanoscale, such as the design of a single-molecular biosensor. Where does
SR originate from and what is its relevance in biological systems? Membrane patches
that are able to exhibit an excitable dynamics must contain ion channels of at least two
different kinds — such as potassium and sodium channels. The mean field model of
HobGKIN and HUXLEY (1952) for voltage gated ion channels, when subjected to exter-
nal noise, clearly exhibits in its firing dynamics the signature of SR (GAMMAITONI et al.
1998). More challenging, however, is the question of whether this biological system, if
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amended by a leakage current due to chloride ions and internal noise that originates
from the random fluctuations of stochastic opening and closing of individual channels,
is capable to exhibit SR. The intrinsic fluctuations within a given assembly of ion chan-
nels scale inversely with its system size. Indeed, the SNR of the spiking dynamics has
recently been demonstrated to exhibit SR, which is solely due to internal noise (JUNG
and SHuar 2001, ScHmID et al. 2001). The SNR increases with increasing system size
until it assumes a peak value at an optimal area of the assembly of ion channels, cf.
Figure SA. Notice that this SR-behavior mimics SR for the amplification in Fig-
ure 4 C; but now with the noise intensity being read from right-to-left. Above the opti-
mal area, the SNR decreases with increasing size. Only the addition of external noise
will again restore the SR behavior in this regime (see Figure 5 B). Put differently, there
exists an optimal size for which ambient internal noise is beneficial for the functional-
ity of ion channel patches. For sub-optimal, small sizes of ion channel assemblies, the
addition of (external) noise (which simulates even smaller patch-areas) will thus only
degrade the transduction behavior. Moreover, there exists an internal noise-induced co-
herence phenomenon for which the spiking activity assumes for an optimal patch size a
“most rhythmic” activity in the absence of any external input-signal that stems solely
from spontaneous internal ion channel noise (JUNG and SHuAar 2001, ScHMID et al.
2001). These findings yield support to the conjecture that SR, in fact, is biologically
significant. Likewise, the observed SR in biological systems is most likely rooted in a
collective property of globally coupled ion channel assemblies.

SNR

D, ext.:c'

" i s gl L P B B L L L
1 10 A 100 0 2 24 j 6 8
Area [um’] Dy[pA”/em” ms]

Fig.5 (A) SNR data for a stochastic Hodgkin-Huxley modeling of an assembly of sodium and potassium
ion channels and additional leakage channels for an external sinusoidal subthreshold stimulus of amplitude
1.0 pA cm™ and angular driving frequency of 0.3 ms™" (ScHMID et al. 2001). One observes intrinsic SR for
a weak stimulus versus solely internal noise. The internal noise intensity decreases with increasing area of
the membrane patch. (B) If additional, external noise Dey, is applied for the system sizes marked by the
arrows in (A), one finds the SNR behavior for the corresponding membrane size versus D.y,. Notice that add-
ing noise to small assemblies below optimal size only deteriorates the transduction behavior further. In clear
contrast, however, for above-optimal sizes the addition of noise yields the conventional SR behavior. For
comparison, the situation for infinite size (i.e. the mean field limit) with zero internal noise is depicted by
the dotted line through the thin dots.
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3.3 Biomedical Benefits from SR

A most appealing feature of SR is the fact that it holds promise for the good of mankind,
where numerous physiological functions are marked by threshold behaviors. For exam-
ple, several disorders of the nervous system are caused by increased sensory thresholds,
which lead to a reduced firing rate in the corresponding neurons. Experimental results
(CoLLINs et al. 1996, RICHARDSON et al. 1998) have offered hope that SR will find its
way into applications that are beneficial for mankind in providing some means for the
possible cure of, for example, a disordered person’s balance, a patient’s locomotion and
other physiological functions. COLLINS et al. (1996) could establish several experimental
SR procedures in order to improve a patient’s tactile sensation by employing an optimal
dose of mechanical or electrical noise to successfully detect subthreshold stimuli. The
human visual perception system (RIANI and StMoNoTTO 1995, StMONOTTO et al. 1997)
and the human blood pressure regulatory system, the so termed “baroreflex system”
(Hipaka et al. 2000) offer yet other examples for biomedical benefits via the phenom-
enon of SR.

4. Electronic Transport in DNA

The molecule of life, DNA, plays a pivotal role in biology for the storage and the propa-
gation of genetic material. Recently, DNA has moved into the limelight as a possible
candidate for long range electronic motion. Unlike other proteins such as cytochromes
and the photosynthetic reaction centre, DNA is not an ideal electron transfer species.
There is also little evidence for the role of DNA-assisted charge migration in biological
function and performance. So, why is there so much excitement about DNA being pos-
sibly a good conductor? First, the DNA with its p-electron system of four bases (guanine
[G], cytosine [C], adenine [A], thymine [T]) stacked upon each other resembles certain
“molecular metals”. Second, there are biological implications which pertain to radiation-
induced damage, where radical reactions with nucleobases occur. These may be followed
by charge migration processes that result in inter-strand and intra-strand chemical reac-
tions which in turn lead to mutations. Most of all, however, DNA with its unique assem-
bly properties, unparalleled recognition features, stability and optical properties make
DNA a most potential candidate for the timely area of molecular electronics. It may be
used as a toolkit component in building molecular architectures composed of molecular
biosensors, molecular switches, molecular-memory elements and molecular rectifiers
and the like. Needless to say, that theoretical and experimental DNA assisted charge
transport issues have attracted much attention recently (DEKKER and RATNER 2001). Ac-
cording to some recent experiments by physicists with a bundle of DNA of ca. 10 nm in
length (FINK and SCHONENBERGER 1999), DNA conducts well with ~1 mega-Ohm of
resistance. Others (KAasumov et al. 2001) even claim that DNA can conduct charge with
virtually no resistance at room temperature; moreover, at extreme low temperatures DNA
possibly even exhibits a supercurrent (Kasumov et al. 2001). In contrast, researchers at
Delft University of Technology have shown by a series of reproducible experiments with
poly(dG)-poly(dC) DNA of 10—40 nm in length that DNA behaves like a good insulator
with a resistance larger than 10'2 Ohm (PorATH et al. 2000, DEKKER and RATNER 2001).
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This result is corroborated in recent experiments of the Princeton group (ZHANG et al.
2002) by two-probe current versus voltage measurements with micron based (lambda)-
DNA molecular wires bound to two gold electrodes (by incorporating thiol-modified
nucleotides into both DNA ends) embedded in a buffer solution. The result is that
(lambda)-DNA indeed behaves as an insulator possessing at room temperature a specific
resistance p > 10° Ohm/cm. These latter experimental studies are fully consistent with
recent electron transfer studies in DNA: Physical chemists have convincingly demon-
strated (MEGGERS et al. 1998, GIESE et al. 2001) that long-range electron transfer in
DNA occurs either via “thermal hopping” when G—C pairing sites are involved, or via
coherent superexchange (i.e., no energy is exchanged with the molecule and environ-
ment) when A-T base pairs must be overcome. In the latter case the reaction rate de-
creases exponentially with the distance between donor and acceptor.

A satisfactory theoretical treatment of the overall electron (hole)-transport process is
still lacking. In particular, this unique combination of incoherent hopping and coherent
electron transfer mechanisms calls for a unified treatment that consistently accounts for
the effects of coherence and dissipation on the same basis as it had been put forward for
the thermally assisted tunneling escape rate (the quantum-Kramers turnover theory) for
reactions that occur in condensed phases, see HANGGI et al. (1990).

The transport mechanism of DNA when sandwiched between electrodes seems not
settled yet. A whole series of mechanisms have been proposed for the problem of
bridged hole-transport in DNA: These range from band-like transport, to incoherent hop-
ping, to polaron mechanisms and fluctuation-induced electron transfer. On the bridge
itself, however, the dominant mechanisms are, as mentioned above, coherent tunneling
and thermal, tunneling assisted hopping events. The confusingly many different claims
that range from well-insulating behavior to metal-like and even to the support of super-
conducting currents may indicate that the parameter range of DNA is indeed extremely
huge. The differences might be due to the role of a differing sequencing, the role of
solvation on hole motion, differing ambient surroundings such as experiments in li-
quids, air or vacuum, the structural form of the DNA probe and, in particular, the elec-
trode-DNA molecule interface. As a consequence, the community urgently is in need of
careful and reproducible verifications of the different existing experiments and all the
seemingly conflicting findings before final conclusions can be drawn.

5. Summary and Outlook

In this article we have discussed the role of modern statistical physics in describing a
selection of complex biological phenomena. We elucidated the ubiquitous role of noise
for the transduction of biological information, the transport of biological cargo, energy
and charge and the function of biological cellular systems. The pursuit of Brownian mo-
tor theory, Stochastic Resonance and electron transfer theory into the biological and
medical domain is very exciting and promising. Indeed, this change of focus from phy-
sical sciences towards life sciences carries a great potential and causes us to rethink and
refine some of our usual concepts and issues. The lesson to be learned from all these
examples is that noise does provide a useful task for biological activity rather than being
a hindrance. It would seem strange when nature would not have taken advantage of the
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benefits of the naturally occurring boisterous fluctuations, rather than beating it. There
exist many other cases, such as, e. g., the migration of ligands in proteins (ALBERDING
et al. 1978, FRAUENFELDER and WOLYNES 1985, FRAUENFELDER and McMaHON 2001),
protein folding and the like, where the methods of modern statistical physics are salient
and essential in order to account reliably for the jiggling and wiggling behaviors of bio-
molecules characterizing biocomplexity. The ultimate goal must be to be able to describe
the physical and chemical laws governing the structure, the dynamics and the function of
biological materials. At present times, however, we are still far away from being able to
provide biology with major predictive power. On the contrary, physics has repeatedly
learned fundamental principles and concepts from biological phenomena, and it cer-
tainly will continue to do so in the future! In this spirit we (as communicated to us by
Hans FRAUENFELDER) may also quote here Stan ULAM:

“Ask not what physics can do for biology, ask what biology can do for physics.”
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Abstract

One of the goals of cognitive neuroscience is to understand how the brain constructs representations of its
environment. Knowing the neuronal code of such representations is a prerequisite for any reductionistic ex-
planation of cognitive functions such as perception, memory and learning. At present two hypotheses are
pursued: One assumes that perceptual objects are represented by the responses of highly selective, object-
specific neurons which are located at the top of hierarchically organized processing streams. The other fa-
vors the view that representations are distributed and consist of assemblies of cooperatively interacting neu-
rons. A key feature of assembly coding is that individual neurons can participate at different times in
different assemblies which greatly economizes the number of neurons required for the formation of different
representations. This, however, requires versatile mechanisms of response selection that permit dynamic as-
sociation of subsets of distributed neuronal responses for further joint processing. It will be proposed that
synchronization of responses could serve as mechanism for the dynamic selection and binding of responses
because it raises with great precision and without requiring time consuming temporal integration the salien-
cy of responses containing synchronized epochs. Experiments will be reviewed which have been designed to
test predictions derived from the synchronization hypothesis. It will be shown that feature selective neurons
in the visual cortex can synchronize their discharges if activated by the outlines of the same visual object
and that synchronization probability reflects some of the established Gestalt-criteria for perceptual grouping.
Evidence is further provided, that this synchronization is achieved at least in part by cortico-cortical associa-
tion projections. The functional architecture of these connections can be modified in a use-dependent way. It
is proposed that these modifications serve the experience dependent generation of new assemblies such as is
required for perceptual learning. Data will be reviewed that reveal close correlations between the synchroni-
zation of cortical neurons and behavior. In cats trained to perform a visual discrimination task, zero-phase
lag synchronization occurs during preparatory phases and during task performance among cortical areas in-
volved in the task (visual, parietal, frontal) but not while the animal is at rest or consumes the reward. Expe-
riments with stimuli generating rival percepts indicate that synchronization of neuronal discharges in prima-
ry visual cortex changes in a context dependent way and correlates with perception. Responses that are
perceived exhibit a high degree of synchronicity while responses that are excluded from perception desyn-
chronize. These results suggest that synchronization of distributed neuronal responses serves as a mecha-
nism to select responses and to tag them as related.

Zusammenfassung

Eines der Ziele der kognitiven Neurowissenschaften ist die Beantwortung der Frage, wie das Gehirn Repra-
sentationen seiner Umwelt strukturiert. Die Kenntnis des neuronalen Codes solcher Reprisentationen ist
Voraussetzung fiir alle reduktionistischen Erkldrungsversuche von kognitiven Leistungen wie Wahrnehmen,
Erinnern und Lernen. Gegenwirtig werden zwei Hypothesen verfolgt: Eine geht davon aus, dal Objekte der
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Wahrnehmung durch die Antworten hochselektiver, objektspezifischer Neurone reprisentiert werden, die
sich an der Spitze einer hierarchisch organisierten Verarbeitungspyramide befinden. Die andere Hypothese
favorisiert die Annahme, dafl Représentationen eine distributive Struktur aufweisen und auf Ensembles ko-
operierender Neurone beruhen. Ein wichtiges Merkmal von Ensemblecodes ist, daf individuelle Neurone zu
verschiedenen Zeiten in verschiedene Ensembles eingebunden werden kénnen, wodurch die Zahl der Neuro-
ne dramatisch verringert werden kann, die fiir die Bildung unterschiedlicher Reprisentationen benétigt wer-
den. Zur Realisierung von Ensemblecodes sind jedoch besondere Mechanismen erforderlich, die es gestat-
ten, auf flexible Weise die Antworten weit verteilter Neuronen temporér so zusammenzubinden, dal} sie als
zusammengehorig erkannt und gemeinsam weiterverarbeitet werden konnen. Ein Mechanismus, der dies im
Prinzip zu leisten vermag, ist die Synchronisation von neuronalen Antworten. Synchronisation erhtht mit
hoher zeitlicher Prizision die Wirksamkeit von Antworten beziiglich ihrer Fahigkeit, nachgeschaltete Neuro-
nengruppen zu erregen. Sie stellt somit einen idealen Mechanismus dar, um Antworten auszuwéhlen und
dynamisch zu gruppieren. Im Folgenden werden Experimente diskutiert, die entworfen wurden, um die Vor-
aussagen der Synchronisationshypothese zu iiberpriifen. Unter anderem wird gezeigt, da3 merkmalsselektive
Neurone in der Sehrinde ihre Antworten mit hoher zeitlicher Prizision synchronisieren, wenn sie durch die
Konturen kohirenter visueller Objekte aktiviert werden, und dall die Synchronisationswahrscheinlichkeit
die Gestaltgesetze widerspiegelt, die beim perzeptuellen Gruppieren zum Tragen kommen. Entwicklungs-
studien legen nahe, daf} diese Synchronisation auf intrakortikalen Assoziationssystemen beruht, deren Aus-
priagung wesentlich von vorangegangener Erfahrung abhingt. Schlielich werden Daten diskutiert, die enge
Korrelationen zwischen dem Auftreten von neuronaler Synchronisation und bestimmten Verhaltensleistun-
gen zeigen. Solche Zusammenhinge bestehen fiir kognitive Leistungen wie selektive Aufmerksamkeit,
Reizantizipation, visuo-motorische Koordination und perzeptuellen Wettstreit. Die diskutierten Daten sind
mit der Hypothese kompatibel, da3 Synchronisation weit verteilter neuronaler Antworten als Mechanismus
genutzt wird, um Antworten auszuwihlen und fiir eine gemeinsame Weiterverarbeitung vorzubereiten. Syn-
chronisation erscheint somit als idealer Mechanismus, um Relationen zwischen verteilten Antworten dyna-
misch zu definieren.

1. Introduction

Psychophysical and neurophysiological evidence indicates that the brain identifies per-
ceptual objects by decomposing them into components by analyzing the relations
among the respective components and representing in a combined code the components
and their specific relations. This is an efficient strategy for two reasons. First, it permits
unambiguous descriptions of a virtually unlimited number of perceptual objects with a
limited set of symbols for components and relations. Second, it can be scaled and ap-
plied also for the description of complex constellations, i.e., for the infinite variety of
contextual configurations in which perceptual objects can occur. Linguistic descriptions
follow the same principle. By recombining in ever changing configurations a rather lim-
ited set of symbols for components, properties and relations, a virtually inexhaustible
universe of constellations can be encoded. However, there is an interesting trade-off be-
tween the complexity of the symbols and the syntactic rules required for the definition of
relations.

In principle, a sentence describing a complex constellation of components can be
substituted by a single symbol that captures the full meaning of the sentence. Implemen-
tation of such comprehensive symbols may be advantageous for the description of parti-
cularly important or frequently occurring constellations. It would make little sense, how-
ever, to substitute all possible sentences by specific symbols as this would lead to a
combinatorial explosion of the required vocabulary. Conversely, if symbols address only
very elementary components only few different symbols are required because the num-
ber of elementary components is orders of magnitude smaller than the number of possi-
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ble configurations among components: a few dozens of different atoms suffice to gener-
ate a universe of molecules and four nucleotides suffice to spell out the alphabet of the
genome that instructs the development of organisms. However, if only low-level compo-
nents are encoded by individual symbols, descriptions of complex objects may become
intolerably long and require highly sophisticated syntactic structures in order to cope
with the large number of nested relations that need to be specified. Biological systems
can be expected to have evolved optimally adapted compromises in this trade-off be-
tween the sophistication of descriptors and the complexity of relation defining mecha-
nisms whereby this compromise is likely to differ for different coding tasks. Variables
that are likely to be traded against each other are the costs of individual descriptors, the
hardware requirements for the generation of complex descriptors, the costs and hardware
constraints of relation defining mechanisms and the reliability and speed of the respec-
tive coding strategies.

If nervous systems have evolved towards such a compromise between coding strate-
gies one expects to find neurons whose responses signal the presence of elementary com-
ponents as well as of conjunctions of variable complexity. In addition, one expects the
implementation of mechanisms that permit a flexible and context dependent definition
of relations among the responses of these neurons.

The numerous investigations of single cell responses performed over the past decades
have provided robust support for the existence of neurons in sensory areas of the cerebral
cortex that signal the presence of components and some of their conjunctions. The for-
mer prevail at early and the latter at late stages of the processing streams. However, until
recently, no systematic investigations were devoted to the analysis of mechanisms per-
mitting flexible and context dependent definitions of relations among the responses of
these neurons. Reasons were mainly conceptual. First, the discovery of neurons respond-
ing to highly complex conjunctions of elementary components of perceptual objects sug-
gested that relations are encoded mainly by conjunction specific neurons which acquire
their specificity by recombination of input signals. This notion is supported by the evi-
dence that cells responding to elementary components connect in variable constellations
onto higher order neurons which then respond to the specific conjunction of components
defined by the respective input constellations. This mechanism, if iterated sufficiently
often, can in principle cope with the definition of all conceivable relations but, as dis-
cussed above, it requires a large number of relation encoding, conjunction specific neu-
rons. Another reason why systematic search for alternative relation coding mechanisms
has not been attempted is the explanatory power of models which assume that most of
the information conveyed by a neuron is encoded in the amplitude of its response, i. e., in
its discharge rate. Accordingly, it was held that all relevant information is retrievable by
recording the event related responses of single cells. The numerous and excellent corre-
lations between the response amplitudes of individual cells and particular perceptual and
motor functions provided ample support for this notion. For these reasons there was little
incentive to record from more than one unit at a time and to investigate the possibility
that additional information is contained in the temporal relations among the discharges
of simultaneously active neurons.

Systematic search for mechanisms that are complementary to conjunction specific
units and permit dynamic definition of relations among distributed responses began
after the accidental finding that neurons in the cat visual cortex can engage in oscilla-
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Fig. 1 Schematic wiring diagram of a hierarchically organized feed-forward network that generates con-
junction specific neurons which respond selectively to different perceptual objects. Note that the neurons re-
presenting the faces and the vase, respectively, receive input from partially the same feature-specific neu-
rons.
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tory firing patterns and synchronize their discharges with a precision in the millisecond
range (GRAY and SINGER 1987, 1989). This finding suggested the hypothesis that the
cerebral cortex can coordinate the temporal fine structure of neuronal discharge se-
quences and that it exploits this ability in order to define relations among the responses
of distributed neurons that are difficult to encode with conjunction neurons. In the fol-
lowing, some of the theoretical considerations are reviewed which led to the hypothesis
that temporal synchronization could serve as a strategy to define relations among distrib-
uted neurons that is complementary to the encoding of relations by conjunction specific
neurons. Subsequently, some of the experiments are discussed that were designed to test
predictions derived from the synchronization hypothesis.

2. Smart Neurons and Assemblies

Figure 1 illustrates how relations among features can be encoded by conjunction specific
neurons within hierarchically structured feed-forward architectures. Representing rela-
tions among components by conjunction units has two undisputed advantages: First, it
permits rapid processing because it can be realized in feed-forward architectures. Sec-
ond, it is unambiguous because the response of a particular cell always signals the same
relation (labeled line coding). However, if not complemented by additional, more dy-
namic and context sensitive mechanisms for the definition of relations this strategy
poses problems. First, excessively large numbers of conjunction units are required to
cope with the manifold intra- and cross-modal relations between the features of real
world objects. Second, it is hard to see how the entirely new relations among the fea-
tures of novel objects can be represented as there cannot be an exhaustive repertoire of
a priori specified conjunction units for all possible feature constellations. Third, unre-
solved problems arise with the specification of the nested relations that need to be de-
fined to represent composite objects or scenes containing numerous objects. (For a more
detailed review of the arguments see GRAY 1999, VON DER MALSBURG 1999, SINGER
1999.)

These shortcomings can be overcome by assembly coding. Here individual cells
signal only components of objects and the whole object is represented by the simulta-
neous responses of the respective component coding cells (see Fig. 2). Individual neu-
rons can then contribute at different times to the representation of different objects by
forming ensembles with varying partners. This reduces dramatically the number of
required conjunction units. It also solves the problem of representing the novel rela-
tions among the features of unfamiliar objects because cells representing elementary
features can be grouped dynamically in ever changing constellations and then repre-
sent as an assembly the particular combination of features characteristic for the novel
object. An essential prerequisite for this coding strategy is a dynamic binding mechan-
ism that can group cells into assemblies and tag their responses such that they are
recognizable as related by other centers in the brain. Such dynamic binding of neu-
rons into functionally coherent assemblies requires that neurons interact cooperatively
with one another through reciprocal association connections and reentry loops and,
therefore, assembly coding cannot be realized in architectures containing only feed-
forward connections.
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Fig.2 Schematic wiring diagram of neuronal architectures serving the representation of perceptual objects
by assemblies. Note that the assembly representing the vase shares neurons with the assemblies representing
the faces. To ensure stability of the respective assemblies, additional reciprocal connections among neurons
constituting an assembly are required (shaded regions) that bind responses of neurons belonging to the same
assembly.

40 Nova Acta Leopoldina NF 88, Nr. 332, S. 35-56



Oscillations and Synchrony — Time as Coding Space in Neuronal Processing

3. Synchrony as Code for Relations

An unambiguous signature of relatedness is absolutely crucial in assembly coding be-
cause, unlike in labeled line codes, the meaning of responses changes with the context
in which they are embedded. It needs to be assured that the responses of the neurons that
constitute an assembly are processed and evaluated together at subsequent processing
stages and are not confounded with other, unrelated responses. In principle, this can be
achieved by raising jointly and selectively the saliency of the responses belonging to an
assembly and there are three options: First, unrelated responses can be inhibited and
excluded from further processing. Second, the discharge frequency of the selected re-
sponses can be enhanced, and third, the selected cells can be made to discharge in pre-
cise temporal synchrony. All three mechanisms enhance the relative impact of the se-
lected responses and can therefore be used to tag them as related. Problems arise,
however, when several assemblies need to be formed at the same time and need to re-
cruit partly the same neurons, — a condition that is likely to occur when a scene contains
several objects that have subsets of features in common. This problem has been ad-
dressed as the so-called superposition problem and can only be resolved by segregating
assemblies in time (see Fig. 3). One option is to jointly raise the discharge frequency of
cells belonging to the first assembly for an interval sufficiently long to permit read-out
by subsequent stages and to subsequently increase the discharge rate of the cells belong-
ing to the second assembly and so on. Another option to label responses as related is to
synchronize the respective discharges. Unlike joint rate increases which exploit temporal
summation and enhance the saliency of prolonged response stretches synchronization
exploits spatial summation and raises selectively the saliency of coincident discharges.
Thus, synchronization can define relations with much higher temporal resolution than
rate modulation and in principle permits multiplexing of assemblies on a spike by spike
basis as suggested in Figure 3.

Another, potentially important advantage of using synchrony as tag of relatedness is
that relations can be specified independently of firing rate. Discharge rates depend on
numerous variables such as e.g. the physical energy of stimuli or the match between
stimulus and receptive field properties. Response amplitudes are, thus, rather ambiguous
indicators of relatedness. As synchrony can be modulated by temporal regrouping of
discharges and, thus, can be varied independently of firing rates, synchronicity and rate
can be used as orthogonal codes. Signals indicating the presence and the properties of
visual features can thus be kept separate from signals indicating how these features are
related.

Another advantage is that synchronized input is transmitted with minimal latency
jitter (ABELES 1982, DIESMANN et al. 1999). Thus, signatures of relatedness can be re-
layed with great reliability across processing stages, which contributes to reducing the
risk of false conjunctions. Finally, synchronization enhances processing speed also by
accelerating synaptic transmission per se because synchronized excitatory postsynaptic
potentials (EPSPs) trigger action potentials with minimal delay.

These features make response synchronization an attractive strategy for the encod-
ing of relations. However, in order to be effective, several additional constraints need to
be met. First, neuronal networks must be able to modify and to coordinate the temporal
patterning of spike trains in a context dependent manner. Second, the constellations of
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synchronously discharging neurons must be changeable within a few tens of milli-
seconds in order to be compatible with processing speed. Third, the temporal signa-
tures of coordinated discharge sequences must be preserved with millisecond precision
across processing stages. Fourth, neuronal networks must be able to distinguish syn-
chronous from temporally dispersed activity with a precision in the millisecond range,
i.e., synchronous input must have a stronger impact on neurons than asynchronous in-
put. Fifth, if relations are encoded by synchrony then Hebbian learning, i.e., the use-
dependent modifications of synaptic gain, must also depend on the synchronicity of
pre- and postsynaptic discharge patterns and not only on the mere covariation of rate
changes. Finally, the occurrence and structure of synchronous discharge patterns needs
to be related in a meaningful way with perceptual or motor processes that require dy-
namic grouping of responses.

4. Experimental Evidence

There is growing evidence that neuronal networks are capable of transmitting temporal
patterns with high precision and to distinguish between coincident (synchronous) and
non-coincident (temporally dispersed) input signals. Psychophysical experiments indi-
cate that the visual system is sensitive to stimulus-onset asynchronies of less than
10 ms (LEONARDS et al. 1996, ALAls et al. 1998, UsHER and DoONELLY 1998, LEE and
BLAKE 1999) supporting the notion that temporally modulated responses can be trans-
mitted over several processing stages with a precision in the millisecond range. Suppor-
tive evidence comes from electrophysiological investigations. Cross-correlation analysis
between simultaneously recorded responses of retinal ganglion cells, relay neurons in the
thalamus and cells of the visual cortex shows that the oscillatory patterning of synchro-
nized retinal responses is reliably transmitted to the cortex (CASTELO-BRANCO et al.
1998). Given the high frequency of the retinal oscillations (up to 100 Hz) this implies
high temporal fidelity of synaptic transmission over several stages. The well synchro-
nized cortical responses to flicker stimuli point in the same direction (RAGER and SINGER
1998). As indicated by the precise temporal modulation of responses in area MT, a high-

<

Fig. 3 Options for the solution of the superposition problem. Superposition problems arise if perceptual
objects are present whose corresponding assemblies share partly the same neurons (upper box). In this case,
different assemblies need to be segregated in time to avoid false conjunctions. One option is to raise succes-
sively the saliency of responses belonging to the respective assemblies by enhancing the discharge rate of
the corresponding responses (lower box, option 1). An alternative solution is to enhance the saliency of re-
sponses belonging to a particular assembly by making the discharges of the respective neurons coincident in
time (option 2). This permits rapid multiplexing of the different assemblies because coincidence can be eval-
uated within short time intervals, as it does not require temporal summation. Here it is assumed that the dif-
ferent assemblies alternate at intervals of approximately 25 ms. Note that this temporal structure can be, but
does not have to be, obvious in the discharge sequences of individual neurons (channels 1-12) but that the
spike density function of the population response shows an oscillatory modulation in the 40 Hz range. Note
also that the constellation of neurons contributing spikes to the oscillatory population response changes
from cycle to cycle.
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er area of the monkey visual cortex, temporal fidelity of synaptic transmission holds also
for cortico-cortical connections (BURACAS et al. 1998). Simulation studies indicate that
such precision is readily obtained with neurons that operate with conventional time con-
stants. The only prerequisite is that transmission occurs in parallel channels that interact
through diverging and converging axon collaterals (DIESMANN et al. 1999). Once neu-
rons at the same processing level have synchronized their discharges, the highly coher-
ent pulse packets are conveyed with minimal dispersion across several synaptic stages as
postulated for synfire chains (ABELES 1991).

Evidence is also available that synchronization can be established and dissolved very
rapidly. Simulations with spiking neurons revealed that networks of appropriately
coupled integrate and fire units can undergo sudden transitions from uncorrelated to syn-
chronized states and vice versa (GERSTNER 1996).

The postulate that synchronized activity should have a stronger impact in target struc-
tures than temporally dispersed firing is also supported by data. Simultaneous recordings
from coupled neuron triplets along thalamo-cortical and intracortical pathways in the
visual system have revealed that EPSPs synchronized within intervals below 2 or 3 ms
are much more effective than EPSPs dispersed over longer intervals (ALONSO et al.
1996, ALonso and MARTINEZ 1998, Usrey and REID 1999). Multielectrode recordings
from several sites of the cat visual cortex and retinotopically corresponding loci in the
superior colliculus indicated that the impact which a particular group of cortical neurons
has on target cells in the colliculus increases substantially whenever the cortical cells
synchronize their discharges with other cortical cell groups projecting to the same site
in the tectum (BRECHT et al. 1998). Enhanced saliency of synchronized responses can
also be inferred from experiments in amblyopic cats which showed a close correlation
between reduced synchrony in primary visual cortex and a loss of responses in higher
visual areas (ROELFSEMA et al. 1994, SCHRODER et al. 2002). Similar conclusions are
suggested by simulation studies (NIEBUR and KocH 1994, BAIR and KocH 1996) and
in-vitro experiments (STEVENS and ZADOR 1998, LARKUM et al. 1999, SCHILLER et al.
2000).

Further evidence that precise temporal relations among neuronal discharges matter in
cortical processing comes from investigations of synaptic plasticity. Varying the tempo-
ral relations between presynaptic EPSPs and postsynaptic spike responses in simulta-
neously recorded coupled cortical cells revealed that long-term potentiation (LTP) re-
sults when the EPSP precedes the postsynaptic spike within intervals of 10 ms or less
while the polarity of the modification reverses to long-term depression (LTD) as soon
as the EPSP follows the spike (MARKRAM et al. 1997). Thus, shifts of a few milliseconds
in the timing relations between pre- and postsynaptic discharges suffice to invert the
polarity of use-dependent synaptic modifications. The mechanism permitting such pre-
cise evaluation of the temporal contiguity of pre- and postsynaptic responses is the ac-
tive dendritic response associated with the back-propagating spike. The following results
obtained from visual cortex slices point in the same direction. They suggest that the
temporal windows for Hebbian coincidence matching are sharpened further if neurons
engage in oscillatory responses.

Pyramidal cells of rat visual cortex slices were made to discharge tonically at 20 or
40 Hz by injecting sinusoidally modulated current through a patch pipette. Simulta-
neously, EPSPs were evoked at 20 Hz by electrical stimulation of excitatory afferents.
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Changing the phase relations between pre- and postsynaptic activity revealed that the
stimulated input tended to undergo LTP when the EPSPs were coincident with the
spikes while afferents consistently underwent LTD when the EPSPs fell in the troughs
of the membrane potential oscillations. Thus, phase shifts of about 12 ms between indi-
vidual EPSPs and spikes reversed the polarity of the synaptic modifications (WESPATAT
et al. in prep.).

In conclusion, there is converging evidence from different experimental approaches
that cortical networks can handle temporal patterns with high precision and that precise
timing relations among the discharges of distributed neurons are computationally rele-
vant. Thus, the major constraints for the use of synchrony as a relation defining code
are met. But does the brain exploit this option?

5. Functional Correlates

Several properties make response synchronization, as it has been observed in the visual
cortex, a good candidate mechanism for the definition of relations. First, synchronization
is sufficiently precise, in particular when it is associated with - and y-oscillations, to
raise the saliency of the synchronized responses and to be computationally effective.
Second, joint firing is not simply the result of coherent, stimulus locked variations in
discharges rate nor is it a trivial reflection of anatomical connectivity such as shared
input. Rather, synchronization is generated by dynamic interactions within the cortical
network and its spatiotemporal patterning depends on a large number of variables:
among these are the stimulus configuration (GRAY et al. 1989, ENGEL et al. 1991b), the
architecture of the intracortical synchronizing connections (ENGEL et al. 1991 a, LOWEL
and SINGER 1992), the activation state of the cortical network (MUNK et al. 1996, HERCU-
LANO-HOUZEL et al. 1999) and attention dependent effects (ROELFSEMA et al. 1997,
STEINMETZ et al. 2000, Fries et al. 2001 b). These multiple influences endow synchroni-
zation with the required context sensitivity. Third, synchronization can be established
across different cortical areas (ENGEL et al. 1991 c, ROELFSEMA et al. 1997) and even
hemispheres (ENGEL et al. 1991 a) which are required for a relational code. Fourth, syn-
chrony has been shown to vary independently of rate changes (RIEHLE et al. 1997, HER-
CULANO-HOUZEL et al. 1999) which is advantageous for the encoding of relations (see
above). Fifth, synchronization is not an all or none phenomenon. When populations of
cells engage in synchronous oscillatory activity, individual cells can skip cycles (Buzsa-
KI and CHROBAK 1995, Buzsaki 1996) and cells participating in population oscillations
of different frequency can engage in partial correlations (JENSEN and LiSMAN 1998).
This can be exploited to express graded and nested relations (Luck and VOGEL 1997).
Sixth, when cells engage in synchronous oscillatory activity, the probability increases
that the same cells synchronize in subsequent trials (HERCULANO-HOUZEL et al. in
prep.). This makes it in principle possible to store information about relations by chang-
ing synchronization probability.

In the following some of these features of response synchronization will be discussed
in more detail whereby emphasis is laid on synchronization phenomena in the visual
system and on relations between synchrony and cognitive processes.
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6. Perceptual Grouping

Scene segmentation and perceptual grouping are typical examples of low-level visual
functions requiring flexible definition of relations. If internal synchronization of dis-
charges serves to tag responses as related and to assure their joint processing, synchroni-
zation probability among neurons in early visual areas should reflect some of the basic
Gestalt-criteria according to which the visual system groups related features during scene
segmentation. Multielectrode studies designed to test this prediction revealed that neu-
rons distributed across different columns within the same or different visual areas and
even across hemispheres tend to synchronize their responses with close to zero phase
lag when activated with a single contour but fire independently when stimulated simulta-
neously with two different contours (GrAY et al. 1989, ENGEL et al. 1991 a, b, c, FrREI-
WALD et al. 1995, KREITER and SINGER 1996). Further analysis of the dependence of
synchrony on receptive field and stimulus configurations confirmed that the probability
and strength of response synchronization reflected elementary Gestalt-criteria for per-
ceptual grouping such as continuity, proximity, similarity in the orientation domain, co-
linearity, and common fate (for review see SINGER 1993, SINGER et al. 1997, GRrAY
1999). These early experiments were performed in anesthetized animals but more recent
multielectrode recordings from awake cats and monkeys indicate that these synchroniza-
tion phenomena are not artifacts of anesthesia but are even more pronounced when the
animals are awake and attentive (KREITER and SINGER 1992, FRrRIEN et al. 1994, KREITER
and SINGER 1996, FrIES et al. 1997, GrRAY and VIANA DI Prisco 1997, FRIEDMAN-HILL
et al. 2000, MALDONADO et al. 2000). It is noteworthy that none of these systematic
changes in synchronization probability have been associated with systematic stimulus
dependent changes of the neurons’ discharge rate.

A particularly close correlation between neuronal synchrony and perceptual grouping
has recently been observed in experiments with plaid stimuli. These stimuli are well
suited for the study of dynamic binding mechanisms because minor changes of the stim-
ulus cause a binary switch in perceptual grouping. Two superimposed gratings moving in
different directions (plaid stimuli) may be perceived either as two surfaces, one being
transparent and sliding on top of the other (component motion), or as a single surface,
consisting of crossed bars, that moves in a direction intermediate to the component vec-
tors (pattern motion) (ADELSON and MovSHON 1982, STONER et al. 1990). Which per-
cept dominates depends on the luminance of grating intersections because this variable
defines the degree of transparency (ALBRIGHT and STONER 1995) (Fig. 4A). Here is a

<

Fig. 4 (A) Two superimposed gratings that differ in orientation and drift in different directions are perceived
either as two independently moving gratings (component motion) or as a single pattern drifting in the inter-
mediate direction (pattern motion), depending on whether the luminance conditions at the intersections are
compatible with transparency. (B) Predictions on the synchronization behavior of neurons as a function of
their receptive field configuration (/eft) and stimulation conditions (right). (C) Changes in synchronization be-
havior of two neurons recorded simultaneously from areas 18 and PMLS that were activated with a plaid stim-
ulus under component (upper graph) and pattern motion conditions (lower graph). The two neurons preferred
gratings with orthogonal orientation (see receptive field configuration, top, and tuning curves obtained with
component and pattern, respectively) and synchronized their responses only when activated with the pattern
stimulus (compare cross-correlograms on the right). (Adapted from CASTELO-BRANCO et al. 2000.)
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case where the percept changes when the assignment of relations among stimulus com-
ponents changes. If these relations are defined by selective synchronization, a set of tes-
table predictions can be formulated (see Fig. 4 B): One of them is that groups of neurons
that are tuned to respond to different gratings should synchronize their responses if they
mediate the percept of coherent pattern motion because in this case they must signal that
all contours belong to the same surface and are related. By contrast, the same groups of
cells should not synchronize if they mediate the percept of component motion because in
this case their responses are associated with two different surfaces and must be treated as
unrelated.

Cross-correlation analysis of responses from cell pairs recorded from various visual
areas of lightly anesthetized cats confirmed this prediction as well as a number of others.
Cells synchronized their activity if they responded to contours that are perceived as be-
longing to the same surface (CASTELO-BRANCO et al. 2000) (Fig. 4 C). This is strong
support for the hypothesis that synchronization could serve to encode in a context depen-
dent way relations among simultaneous neuronal responses.

7. Perceptual Selection

If synchronization serves to raise the saliency of responses, one should expect that it is
used as a mechanism for response selection that is complementary to response selection
by rate increases.

An involvement of response synchronization in stimulus selection has been documen-
ted in experiments on binocular rivalry (FRrIES et al. 1997, 2002). When different stimuli
that cannot be fused into a single percept are presented simultaneously to the two eyes
perception always alternates between the two eyes. This can be exploited to investigate
how neuronal responses to constant stimuli change if they pass from being selected and
perceived to being suppressed and excluded from perception and vice versa (Fig. 5). The
outcome of these experiments was surprising because the responses in early visual areas
(areas 17 and 18 in cat) were not enhanced in amplitude when they supported perception
and were not attenuated when they were excluded from supporting perception. A close
and highly significant correlation existed, however, between changes in the strength of
response synchronization and the outcome of rivalry. Cells mediating responses of the
eye that won in interocular competition increased the synchronicity of their responses

<

Fig. 5 Neuronal synchronization under conditions of binocular rivalry. (A) Using two mirrors, different
patterns were presented to the two eyes of strabismic cats. Panels (B—E) show normalized cross-correlograms
for two pairs of recording sites activated by the eye that won (B, C) and lost (D, E) in interocular competi-
tion, respectively. Insets above the correlograms indicate stimulation conditions. Under monocular stimula-
tion (B), cells driven by the winning eye show a significant correlation which is enhanced after introduction
of the rivalrous stimulus to the other eye (C). The reverse is the case for cells driven by the losing eye (com-
pare conditions D and E). The white continuous line superimposed on the correlograms represents a damped
cosine function fitted to the data. RMA, relative modulation amplitude of the center peak in the correlo-
gram, computed as the ratio of peak amplitude over offset of correlogram modulation. This measure reflects
the strength of synchrony. (Modified from FrIEs et al. 1997.)
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upon presentation of the rival stimulus to the other, losing eye while the reverse was true
for cells driven by the eye that became suppressed. This agrees with rivalry experiments
in awake, behaving monkeys which showed no systematic relation between the strength
of visual responses and perception in early visual areas but a clear correlation between
perceptual suppression and loss of neuronal responses in higher visual areas (LOGOTHE-
TIS and ScHALL 1989, LEoPoLD and LOGOTHETIS 1996, SHEINBERG and LOGOTHETIS
1997). This is what one expects if the saliency of the responses from the two eyes is
adjusted at early processing stages by modulating synchronization rather than discharge
rates.

8. Dependency on Central States and Attention

A characteristic feature of response synchronization is its marked state dependency. It is
particularly prominent when the cortex is in an activated state, i.e., when the EEG is
desynchronized and exhibits high power in the f- and y-frequency range (Fig. 6)
(Munk et al. 1996, HERcuLANO-HOUZEL et al. 1999). Especially synchronization over
long distances, that requires oscillatory patterning of responses, breaks down completely
when the EEG gets “synchronized” and exhibits high power in the low frequency range
(< 10 Hz). This close correlation between the occurrence of response synchronization on
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Fig. 6 State dependence of response synchronization. Upper row: Power distribution in the EEG recorded
during three episodes from an anesthetized cat. Lower row: Averaged cross-correlograms of multi unit re-
sponses evoked by a drifting grating and recorded from two different sites in A17 during corresponding epi-
sodes. Note that the synchronization of the responses and the oscillatory modulation in the y-frequency
range increase with increasing y-activity in the EEG. Inserts in the power spectra give the relative power in
the J- and y-frequency range. Inserts in the cross-correlograms give the oscillation frequency (Hz), the rela-
tive modulation amplitude of the center peak (MA) and of the first side peak (MAS). (From HERCULANO-
HouzkL et al. 1999.)
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the one hand and EEG states characteristic for the aroused and performing brain on the
other hand may be taken as support for a functional role of precise synchrony in cortical
processing.

The magnitude and precision of synchronization in the - and y-frequency range var-
ies also in the fully aroused brain and is then correlated with fluctuations of attention.
Such modulation of synchrony has been observed in cats trained to perform a visually
triggered motor response. The visual, association, somatosensory and motor areas in-
volved in the execution of the task synchronized their oscillatory activity in the f-fre-
quency range as soon as the animals focused their attention on the relevant stimulus.
However, once the reward was available and the animals engaged in consumatory behav-
ior, these coherent patterns collapsed and gave way to low frequency oscillatory activity
that did not exhibit any consistent relations with regard to phase and areal topology
(ROELFSEMA et al. 1997). These results suggest that an attention related process had im-
posed a coherent temporal patterning on the activity of cortical areas required for the
execution of the task. Such anticipatory enhancement of coherence could facilitate rapid
synchronization of responses both within as well as across areas once the stimulus ap-
pears, thereby accelerating selection and grouping of responses.

Anticipatory synchronization patterns would be particularly effective if they exhib-
ited some topological specificity and reflected the architecture of intracortical connec-
tions. In that case they could serve as a read-out mechanism that translates the grouping
criteria defined by intracortical association connections into dynamic patterns of coher-
ent activity against which incoming signals can be matched. Recent evidence supports
such a scenario. Measurements of fluctuations in response latency revealed that self-gen-
erated oscillatory activity in the y-frequency range exhibits a specific patterning that re-
flects intracortical connectivity. Response latencies of neurons in striate cortex fluctuate
considerably for identical, repeatedly presented stimuli but these fluctuations are not
random. They are correlated across cortical columns sharing certain functional proper-
ties (FRIES et al. 2001 a), and these correlations are due to synchronous oscillatory activ-
ity that causes coherent shifts in response latency. The effect is that responses of cells
located in coherently oscillating columns become synchronized right from the begin-
ning due to latency adjustment. Physiological data suggest that these synchronous oscil-
lations are mediated by cortico-cortical connections (ENGEL et al. 1991 a, LOWEL and
SINGER 1992, KONIG et al. 1993) and anatomical evidence indicates that the cortico-cor-
tical association connections link preferentially columns coding for related features that
tend to be grouped perceptually (Ts’0 and GILBERT 1988, GILBERT and WIESEL 1989,
MaALACH et al. 1993, ScHMIDT et al. 1997). Thus, spontaneously occurring oscillatory
activity could serve to continuously translate the functional architecture of the associa-
tion connections into coordinated fluctuations of neuronal excitability which, in turn,
would lead to fast, context dependent synchronization of neuronal responses. These on-
going oscillatory patterns are in addition modified by top-down influences from higher
cortical areas and by immediately preceding changes of sensory input. Both effects
would be equivalent to the functions commonly attributed to attentional mechanisms,
the selection and binding of expected events, either as a consequence of bottom up prim-
ing or of intentional top down selection. The observed fluctuations could thus be equiva-
lent with the system’s updated expectancy that is determined by the fixed, locally in-
stalled grouping rules, by top-down influences and preceding sensory input. Seen in
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this context, ongoing activity assumes the function of a predictor against which incoming
activity is matched (GROSSBERG 1999). One of the effects of matching these predictions
with incoming signals is a rapid temporal regrouping of output activity.

Direct evidence for an attention dependent anticipatory modulation of synchronous
y-oscillations has recently been obtained in area V4 of the monkey visual cortex (FRIES
et al. 2001 b). While the monkey expected a visual stimulus that needed to be discrimi-
nated, neuronal synchronization increased in the y-frequency range. This increase was
specific for the site where the relevant stimulus was expected to appear and was not
associated with a modulation of discharge rate. When the stimulus appeared, responses
exhibited better coherence when the stimulus was attended than when attention was
directed to another, distracting stimulus. Similar, attention dependent enhancement of
synchrony has been observed among neurons in the somatosensory cortex of monkeys
engaged in a tactile discrimination task (STEINMETZ et al. 2000).

These results suggest that cognitive processes consist not simply of the extraction and
recombination of features but of an active matching operation. Afferent sensory activity
is matched against self-generated activity that exhibits an oscillatory time structure and
spatially distinct patterns of synchronization (for a detailed review of relations between
attention and synchronous oscillations see ENGEL et al. 2001).

9. Conclusion

Taken together, the data and arguments exposed in this chapter support the notion that
neuronal networks are capable of evaluating with a precision in the millisecond range
the temporal relations among the discharges of neuronal populations and that precise
timing relations are computationally relevant both in the context of signal processing
and synaptic plasticity. Evidence suggests further that cortical networks exploit this abil-
ity not only to transmit with high temporal fidelity the temporal features of stimuli across
processing stages but also to impose temporal signatures on neuronal activity that can be
used in a variety of ways. Frequently observed signatures are an oscillatory patterning
and precise synchronization of discharges. Evidence available so far suggests that the
oscillatory patterning serves to synchronize responses at variable time scales and that
synchronization enhances with high temporal resolution the saliency of the synchro-
nized discharges. This, in turn, appears to be used for a variety of different functions
that have in common to require selection of responses for further joint processing.
Changes in synchrony correlate both with preattentive switches in stimulus selection —
as indicated by the rivalry experiments — as well as with attention dependent stimulus
selection. Furthermore, synchronization appears to be used to label responses as related
in the context of both signal processing and use dependent synaptic modifications. This
latter function has the characteristics of a binding mechanism that permits rapid and con-
text dependent definition of relations in ever changing constellations. It is, therefore,
ideally suited to serve as a selection mechanism in assembly coding that associates dis-
tributed responses with one another and assures their joint processing. Assembly coding,
in turn, appears necessary in order to cope with the representation of the astronomical
number of possible relations that can exist among the features of real world objects and
among the objects constituting visual scenes. Thus, both theoretical considerations and
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experimental evidence converge in the conclusion that the cerebral cortex applies with
all likelihood two complementary strategies in order to encode relations: First, an expli-
cit representation of relations by the responses of conjunction specific neurons, and sec-
ond, an implicit representation of relations by dynamically associated assemblies that are
characterized by the transient synchronization of discharges of the participating neurons.
The first strategy seems to be applied for the representation of a limited set of conjunc-
tions and is with all likelihood reserved for items that occur very frequently and/or are of
particular behavioral importance. The second strategy seems to be reserved for the repre-
sentation of novel conjunctions and all those relations that do not warrant explicit repre-
sentation, either because these would require too many neurons or because the contents
to be represented are too infrequent to justify the implementation of specialized and hen-
ceforth committed neurons. Space did not allow me to review the growing literature on
correlations between cognitive processes and synchronous f- and y-oscillations in human
subjects and in non-mammalian animal species. Nor was it possible to discuss the nu-
merous in-vitro studies that have contributed essentially to our understanding of the me-
chanisms responsible for the oscillatory patterning and the synchronization of cortical
responses. These aspects are dealt with in the recent reviews by TALLON-BAUDRY and
BERTRAND (1999) and by WHITTINGTON et al. (2000).
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Abstract

The idea of stochastic resonance is introduced with examples involving single elements, from single protein
molecules to postsynaptic sensory neurons. But perception and behavior surely arise from processes distrib-
uted over both space and time, leading us to consider spatio-temporal stochastic resonance. The seminal,
demonstrative experiment of this phenomenon was created in a chemical system, but preceding this were
simulations of strikingly simple construction — networks of stochastic threshold elements. All these showed
the phenomenon of noise enhanced propagation of spatiotemporal coherent structures. Though there is a
large gap between these elemental demonstrations and operative processes within the brain, we nevertheless
finally mention stochastic resonance experiments in human and animal perception and behavior.

Zusammenfassung

Das Konzept der Stochastischen Resonanz wird allgemein an aus einzelnen Elementen bestehenden Beispielen
erldutert, wie einzelne Proteinmolekiile oder postsynaptische Sinnesneuronen. Die Tatsache, dafi Wahrneh-
mung und Verhalten innerhalb von Prozessen entstehen, die sowohl raumlich als auch zeitlich ausgedehnt sind,
macht die Betrachtung von raum-zeitlicher Stochastischer Resonanz notwendig. Das bahnbrechende Experi-
ment, das dieses Phdnomen anschaulich zeigt, wurde innerhalb eines chemischen Systems realisiert. Diesem
Experiment sind allerdings bemerkenswert einfache Simulationen vorausgegangen — aus Elementen mit
stochastischen Schwellenwerten bestehende Netzwerk — die alle das Phidnomen zeigen, da3 Rauschen die
Ubertragung von raum-zeitlich kohdrenten Strukturen verstirken kann. Obwohl es ein weiter Weg von derarti-
gen elementaren Darstellungen zu realen Hirnprozessen ist, werden wir am Schluff auf Experimente zur
Stochastischen Resonanz in Verhalten und Wahrnehmung bei Menschen und Tieren eingehen.

1. Introduction

Stochastic Resonance (SR) is the somewhat counterintuitive process by which the addition
of a random process, or “noise”, in a class of nonlinear systems, can actually enhance the
detection efficiency or the information content of the detected signal. An optimal noise
enhances the signal optimally while too much or too little noise degrades the information
content. A convenient measure of the quality of the signal is the signal-to-noise ratio
(SNR), a measure that has been traditionally used in SR research. But other measures
have sometimes adopted, for example, the transinformation, Fisher information, discrim-
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inability, input-output coherence, etc. All of these can be optimized with the introduction
of the proper noise intensity either externally or inside a system that shows SR.

For many years, and beginning with its inception as a possible explanation of the
periodic recurrences of the Earth’s Ice Ages (BENzI et al. 1981, 1982, NicoLis 1982),
SR was thought to exist only in bi- or multi-stable dynamical systems (JUNG and
HANGGI 1989). The most frequently studied system was the infinitely damped motion
of a particle moving in a “standard quartic” bistable potential, U(x) = —x*/2 + x*/4, sub-
ject to noise, {(f), and a weak periodic forcing, &:

¥ =x—x+ V2D &) + ¢ sin(wt + ¢). (1]

The first realization of this type of bistable, noisy dynamics in a physical system, apart
from a demonstration in an electronic circuit, was provided by MCNAMARA et al. (1988)
using a bistable ring laser. The first dynamical theory of SR soon followed (MCNAMARA
and WIESENFELD 1989). Refinements of the theory followed as reviewed by JUNG (1993)
as well as a variety of demonstrations in physical systems as reviewed by Moss (1994).

Early on, it was, however, obscure that the barrier crossings of the particle moving in
U(x) could encode information about the weak periodic signal. But it was soon shown
that the probability density of residence times (how long the particle remained in one
potential well) as well as the SNR of the train of barrier crossing marker events could
encode a surprising amount of information about the weak periodic signal (LONGTIN
et al. 1991). These observations also gave rise to the first theoretical applications of SR
in sensory biology (LONGTIN et al. 1991, Moss et al. 1994) and the first demonstration
of SR in a biological system (DOUGLASS et al. 1993) as discussed in Section 2 below.

The advent of SR in sensory biology stimulated a profusion of research. Summaries
can be found in several reviews (Moss 1994, Moss et al. 1994, WIESENFELD and Moss
1995, GAMMAITONI et al. 1998, ANISHCHENKO et al. 1999). SR has also invaded medical
science (CHIOU-TAN et al. 1996, CoLLINS et al. 1996, CorpO et al. 1996, MORSE and
EvaNns 1996, Suki et al. 1998, CHUANG et al. 1999, HipAKA et al. 2000) and more
recently, plant biology (BuscH et al. 2001, HUTT et al. 2002).

But the demonstration of SR in single neurons begs the question of whether, or even
if, an animal or human can be consciously aware of the noise enhanced information in its
peripheral nervous system. This question leads SR research in two distinct directions.
First, “awareness” must, perforce, arise from some sort of multi unit processing. We
are thus led to investigate SR in networks of coupled systems. Coupling can be either
global, or “all-to-all”, or it can be some local form, for example nearest neighbor. In
the latter case, one observes the noise enhanced propagation of coherent structures, or
spatiotemporal stochastic resonance (STSR), as discussed in Section 3 below. Second,
the only way to actually answer the awareness question is with human psychophysics
and animal behavior experiments. These are discussed in Sections 4 and 5. We finally
conclude in Section 6 with some brief speculations on future developments.

1.1 Outline of the Threshold Theory of SR

Only three ingredients are necessary for threshold, or nondynamical, SR: a threshold, a
subthreshold signal and noise. Nature is replete with examples of systems composed of
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these ingredients, so it is not surprising that SR has invaded many scientific and technical
fields. Figure 1A shows an example threshold, Ay = V,, of unit magnitude with a sub-

threshold sinusoidal signal of peak amplitude, A, plus time series for three intensities of
added Gaussian, band limited noise of standard deviation, o, and cutoff frequency f,. The

time series of the positive going threshold crossings are shown by trains of marker pulses
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(A) Three time series of a subthreshold sinusoidal signal, the threshold and added Gaussian noise of

Fig. 1

standard deviation, o; left-to-right, small to large noise. The threshold is Ag =V, = 1.0 units and the sine
wave signal has peak amplitude ¢ = 0.20 units. Positive going threshold crossings are marked by the stereo-
typical spikes above. (B) Power spectra of the threshold crossings of the three time series in (A). Note the
SNRs shown above with maximum SNR value for intermediate noise. (C) The SNR versus o, the standard
deviation of the noise, showing the optimal value at o = 0.60. The dashed line is the theory and the open cir-
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cles are the numerical simulation.
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in the upper parts of the panels. The power spectra of these marker pulse trains are
shown in (B) with the SNRs (computed as the ratio of power in the signal peak to that
in the noise in a 1 Hz bandwidth centered on the signal frequency) shown above. Fig-
ure 1 C is the signature of SR. It shows a maximum in the SNR that occurs for an opti-
mal value of noise intensity, g,,.. The open circles are the results of the numerical simu-
lation and the dashed curve is the theory briefly described below. The noise acts as a
signal sampling function. At low noise the signal is under sampled leading to a poor
SNR. At high noise the SNR is degraded due to randomization. These effects are clearly
seen in Figure 1 A and B.

Given the three ingredients, the SNR is not difficult to calculate approximately
(Moss et al. 1994, GINGL et al. 1995, FREUND et al. 2002). Only two approximations
are necessary, requiring the signal to be small, A < Ay, and the noise cut-off frequency
to be large compared to the signal frequency, f,, >> f; (to insure a large enough signal
sampling rate). In practice these approximations are usually well satisfied. The thresh-
old theory (see especially FREUND et al. 2002) results in a simple formula for the SNR,

(2,434 A5
SNR = { N exp( —5 5 )- (2]

The combination of the inverse ¢* in the prefactor and inverse ¢” in the exponent result
in a function with a maximum SNR at an optimal noise intensity.

It should be noted that all of the foregoing theory applies to “hard” thresholds, that is a
single threshold value characterized by a step function in the input-output relation. Thresh-
olds can, however, be “soft” where a single spike response is determined by a probability
function rather that a completely deterministic threshold crossing. In this case, the prob-
ability that a spike is fired as a function of the value of some stimulus is often a monoto-
nically increasing, nonlinear function but not a step. BEZRUKOV and VobpyaNoy (1997)
have developed an interesting theory that applies to SR without a hard threshold.

1.2 Information Measures

The SNR is not the only information measure that can be used in threshold SR theory or
for the analysis of experimental data. It has, however, the advantage that it does not re-
quire a clean copy of the input signal as, for example, coherence or transinformation
measures do. The transinformation was used in experiments on the cricket cercal system
(see Section 2 below) and in a recent theory of SR in single membrane ion channels
(GoycHuk and HANGGI 2000) stimulated by experiments on ion channels (PETRACCHI
et al. 1994, BEzrUkoOV and Vopyanoy 1997). The behaving animal, of course, does not
have a clean copy of the input signal. The following measures also do not require knowl-
edge of the input signal.

The lower bound of the Fisher information, J; 5, (FISHER 1949) is particularly useful
in sensory biology since it can be obtained from measures of the neural spike train alone.
In threshold theory, it is related to the SNR:

_ Tf, 4 AN T
JLB = \/goé‘exp _ﬁ —ﬁSNR, [3]
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where 7 is a time window across which the spike train is measured and the interspike
time intervals (threshold crossings) are assumed to be Poisson distributed (FREUND
et al. 2002).

Finally, we mention the discriminability, d', a measure used frequently to analyze
statistical data from human psychophysics experiments. It essentially measures the nor-
malized distance between the means of two distributions, one measured with stimulus or
signal present, and one without (see WARD 1999, FREUND et al. 2002). STEMMLER (1996)
has shown that in threshold theory, d' = A+/J1, all of these measures show maxima at
optimal values of the noise intensity and can thus be useful in interpreting experimental
data in SR experiments.

2. Experimental Stochastic Resonance in Single Elements

SR was first demonstrated in a biological experiment using the hydrodynamically sensi-
tive mechanoreceptor system of the crayfish (DouGLASS et al. 1993). Studies of this ani-
mal have a long history in biology. The crayfish was the animal chosen by Thomas
Henry HUXLEY to create and introduce the modern study of physiology, then called zo-
ology (HuxLEY 1880). The crayfish is a successful animal, having spread over the globe
from the arctic to the tropics in myriad species. It surely owes this success in large part
to a remarkable sensory and motor system for escaping predators. The system is based in
part on mechanoreceptors, or hydrodynamically sensitive hairs, spread over the tail fan
(WIESE et al. 1976). Each hair moves with the water and can sense the approach of a
swimming fish, the crayfish’s main predator, via its induced water motions. These mo-
tions are approximately periodic (4 to 10 Hz) but exist for a short period of time and the
system shows optimal response in this frequency range. The hairs are innervated by af-
ferent sensory neurons that converge on the terminal, or 6™, ganglion (located below the
5™ ganglion) as shown in Figure 2. Processing takes place in the ganglion which outputs a
pair of motor neurons that operate the crayfish’s escape reflex, a rapid contraction of ab-
dominal muscles causing the tail to fan the water resulting in a fast backward motion.

These afferents carry action potentials, or spikes, stimulated by water motions to the
ganglion. Embedded in the ganglion and postsynaptic to the sensory afferents are a pair
of bilaterly symmetric caudal photoreceptor (CPR) neurons (WILKENS 1988). The trans-
duction of a weak hydrodynamic signal is mediated by the light intensity falling on the
CPRs.

2.1 Demonstration of SR in Crayfish Mechanoreceptor and Cricket Cercal Systems

In our experiment, the tailfan was excised and mounted in an apparatus such that peri-
odic water motions of 10 to 150 pm in amplitude and 5 to 15 Hz frequency could be
applied. Receptors that were relatively free of internal noise were selected. Recordings
were made on the sensory root as shown in Figure 2 B. The amplitude of the periodic
stimulus was reduced until just barely visible in the power spectrum of the recording.
Noise in the form of random hydrodynamic motions could be added to the periodic stim-
ulus. The SNRs within the sensory afferent neurons were determined from recordings of

Nova Acta Leopoldina NF 88, Nr. 332, S. 57-76 61



Gabor Baldzsi and Frank Moss

Central nervous system
(abdominal nerve oordj% Ganglion

Root  Preamp 7j

' Photoreceptor
Ffeceptor_ﬂ_\ I :
spikes ! |> “Sples
Electrode o Light

Mechanoreceptor neuron

B

Fig.2 (A) The common red swamp crayfish Procambarus clarkii reproduced from the Missouri Conserva-
tionist with permission from the Missouri Department of Conservation. Our interest focuses on the tailfan at
left and the 6™ or caudal ganglion that lies just beneath the carapace near the last segmentation to the left.
The tailfan is covered with approximately 250 hydrodynamically sensitive hairs about 10 by 100 microns in
size. Each is connected to a pair of sensory afferents that converge on the interneurons of the 6™ ganglion.
(B) A diagram of the tailfan, hairs, afferents, ganglion and the two embedded caudal photoreceptor neurons.
Amplifiers and extracellular recording electrodes are shown positioned on a root sensory afferent (left) and
on the output of a photoreceptor. The spread tailfans of the crayfish used in these experiments, Procambarus
clarkii, are typically 3 to 5 cm laterally at the widest.
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the spike train as discussed in Section 1. SNRs were measured for various added noise
intensities. The results of the crayfish experiment are shown in Figure 3 by the open
triangles. The diamonds are the results of an analog simulation of a FitzHugh-Nagumo
(FN) model neuron (Moss et al. 1993). The FN model is not a non-dynamical system,
but it does have a threshold. Instead it is called excitable. When the threshold is crossed,
the system undergoes a Hopf bifurcation and executes one or more cycles. These repre-
sent the action potentials, or spikes, of the actual neuron. The fundamental threshold
dynamics of a generic excitable system were studied in WIESENFELD et al. (1994). We
shall meet the FN model again in Section 3.3 below.

The SR experiment was repeated with a different animal, a cricket, which is a mem-
ber of the same phylum (Arthropoda) but adapted for living on land and immersed in air
instead of water (LEVIN and MILLER 1996). The cricket has a mechanosensory system
quite similar in architecture to the crayfish, except its system is optimized to detect per-
iodic air motions in the range 100-140 Hz. These are the signatures of the cricket’s main
predators, flying wasps and birds, whose approaches induce motions in a set of hairs
spread over two appendages posterior to the body of the cricket. Like the crayfish’s,
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Fig. 3 The SNR in decibels versus noise intensity (measured in V-rms as an input to the hydrodynamic mo-
tion transducer). The triangles shown the crayfish data and the diamonds shown the results of a noisy Fitz-
Hugh-Nagumo simulation. The optimal noise voltage is approximately 0.18 V-rms.
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these hairs are innervated by sensory afferents that converge on a ganglion. An escape
reflex can also be triggered in the cricket by some combination of air movements. There
are no photoreceptors in the cricket ganglion, however.

LEvIN and MILLER’S experiment beautifully demonstrated SR in the cricket mechano-
sensory system (the cercal system). Moreover, they were the first to use a modern infor-
mation measure, the Shannon transinformation, computed between the responses of the
sensory afferents and the air motions to which the tail appendages were subject.

2.2 Postsynaptic SR in the Caudal Photoreceptor and Frog Auditory Neurons

As Figure 2 B shows the sensory afferents that innervate the hairs converge on and are
synaptically connected to a set of some 250 interneurons in the 6" ganglion. Embedded
within the ganglion is a pair of bilaterally symmetric caudal photoreceptor neurons
(CPRs). The CPRs send, and possibly receive, signals from the 6™ ganglion to the
higher nervous system. In addition, the 6™ ganglion outputs two motor neurons that ex-
cite abdominal contractions under certain conditions. The stereotypical contractions lead
to the animal swimming backwards at a high speed, a reflexive motion used for escape
from approaching predators. In several experiments in this laboratory, it was demon-
strated that the light intensity falling on the CPR mediates the transduction efficiency
by which the CPRs send mechanosensory signals to the higher nervous system (PEI et
al. 1996). Essentially the same experiments described in Section 2.1 above were re-
peated, except that recordings were made from the CPR outputs in dark and for various
levels of light intensity falling on the CPR. The recording site is shown on the right in
Figure 2 B. It was observed that for weak hydrodynamic signals the SNR at the CPR
outputs could be enhanced by factors approaching 10 by light in the visible range of
wavelengths and for intensities approximating dim room light. These results have since
been replicated in additional experiments (BAHAR et al. 2002, BAHAR and Moss 2003).

They bring us to the question of function. Why does the presence of light enhance the
hydrodynamic mechanical signal leaving the ganglion? We can only speculate. The cray-
fish is primarily a nocturnal animal preferring to stay inside its burrow during daylight
hours. It nevertheless does sometimes leave the burrow to forage in the daylight. At such
times it is subject to predation by visually hunting fish. So its prospects for survival will
be improved if its mechanosensory system is at high sensitivity relative to noise. Thus
the “early warning system” is switched on when the crayfish is out in the light. And
equally important for survival, the system should be shut down when the animal is
safely inside its burrow in the dark. Why? Recall the noise. The sensory afferents in the
root send remarkably noisy signals to the ganglion. We look at the ganglion as a statis-
tical calculator. Some combination of signal, noise and light results in the escape reflex
being fired with some probability. To enhance survivability, that probability should be
very small when the animal is safely within its burrow.

Even though in this Section, we have considered postsynaptic signal processing, the
recordings were obtained from single units. This will remain true for the next section on
the human median nerve, though the noise is internal and mediates the response of a
multi unit organ. We are working our way toward network applications wherein the
noise originates within each element, as will be described in Section 3.
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2.3 SR in the Human Nerves

The median nerve of the human body carries both sensory and motor neurons down the
arms to activate and innervate tactile senses in the hands and fingers. Using standard
electromyography (EMG), an SR experiment was performed by transcutaneous electri-
cal stimulation of this nerve at the upper forearm while recording action potentials
transmitted along the nerve with surface electrodes on the thumb and second digit of
the right hand. There is a threshold for the transmission and detection of the action
potentials. Moreover, the system is noisy because of the random firings of the neu-
rons, especially the motor neurons. The noise intensity of the latter could be controlled
by subject applied tension in the muscle of the thumb. Thus this was the first biological
SR experiment wherein internal noise was generated and controlled (CHIOU-TAN et al.
1996).

In the experiment, a stimulating pulse was applied, received and recorded. With the
thumb muscle relaxed, the amplitude of the stimulus was reduced until it vanished be-
neath the threshold as observed with the detecting EMG machine. The internal noise,
the random background motor neuron firing rate, was then adjusted to one of three
levels corresponding to three forces exerted by the subject with the thumb pressing
against a force gage. The noise intensity (root mean square value) and its density (histo-
gram of amplitudes) were measured with a second EMG machine. Thus the three ingre-
dients necessary for SR were realized. The experiment was successful in that noise en-
hanced SNRs of the transmitted sensory nerve action potentials were observed at the
thumb and digit electrodes. No enhancement was observed for pulses transmitted
through the motor neurons. Moreover, the characteristic decrease in SNR at high noise
intensities was not observed, possibly because subjects were unable to generate large
enough noise intensities through thumb muscle tension. Follow-up studies showed that
tension in a remote muscle could also enhance transmission of impulses by the sensory
neurons of the median nerve (CHIOU-TAN et al. 1997) even when the locations of the
muscles (upper limbs) and the stimulus and recording electrodes (distal leg to lateral
ankle through the sural nerve) were interrupted by complete paraplegia (TRAN et al.
2000). These experiments point to the possibility that SR may developed as a useful tool
in medical science (GLANZ 1997).

3. Spatiotemporal Stochastic Resonance

Certainly some of the previously cited experiments are evidence of SR in distributed
systems. These systems can be represented by networks of noisy elements coupled ac-
cording to some scheme (JUNG et al. 1992). Perhaps the simplest realization is a net-
work of threshold detectors. The detectors were coupled with exponentially decreasing
strength with distance away from an exciting element. Each element was provided with
its own independent noise source, but all noise sources had the same intensity. The noise
intensity (of the network) was a control parameter. Each element fired a pulse when its
threshold was crossed with the pulse being transmitted to neighbors according to the
aforementioned exponential rule. After firing the threshold element was refractory for a
period of time. Noise enhanced propagation of coherent structures in this simple system
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was observed, with an optimal noise corresponding to a maximum in some measure of
coherence in the network (JUNG and MAYER-KRESS 1995 a, b). These results represented
the first demonstrations of spatiotemporal stochastic resonance (STSR).

3.1 Experimental Realization of STSR in the Belozov-Zhabotinsky Chemical Reaction

An elegant experimental demonstration of STSR has been provided by SHOWALTER and
his colleagues using the Belousov-Zhabotinsky (BZ) chemical reaction (KADAR et al.
1998). Noise enhancement and optimization can take many forms in STSR. In this ex-
periment the distance of propagation of a subthreshold signal in a noisy excitable me-
dium was observed.

The classical BZ reaction was modified to include a light sensitive reactant. In es-
sence the threshold for propagation of an excitation could be controlled by light inten-
sity. The reaction was confined to an approximately two-dimensional gel. The medium
was divided into a superexcitable region where a propagating wave front was generated.
The wave front then entered a subexcitable region where it quickly died out, that is, it
was able to propagate only a short distance as shown in Figure 4 A. The subexcitable
region was then exposed to spatiotemporal noise. This noise was accomplished by divid-
ing the medium up into many small cells, each of which was exposed to light with tem-
porally random intensity (see Fig. 4 E). The light intensity in each cell was statistically
independent of the intensities in all other cells, but the mean intensity — the control para-
meter — was the same for all cells. Increasing the noise from zero first enhances the
propagation distance for the coherent waves, then causes a loss of coherence as the
waves break up at higher noise (see Fig. 4 B-D).

3.2 Noise Enhanced Propagation of Spatiotemporal Waves
in a FitzHugh-Nagumo Network

This system can be modeled in a number of ways. KADAR et al. (1998) used a BZ model
called the Oregonator (FIELD and NoYES 1974) modified to include the photosensitive
reactant. JUNG and MAYER-KRESS also demonstrated noise enhanced propagation dis-
tance in their network of simple threshold elements. But we are leading to discuss STSR
in biological systems. A more biologically relevant model is a network of FitzHugh-Na-
gumo model neurons (BALAzs1 2001) defined by

8%:\1(0.5—\/) (v—1)—w+ DV [4]
dw
E—v—w—b, (5]

where v is the fast and w the slow variable respectively. The difference in time scales is
determined by ¢ and is typically a factor of 500. The slow, or recovery, Equation [5]
insures that the system is refractory for a time the order of €. The system must be refrac-
tory in order for coherent structures to propagate. The excitability parameter is b, which
has a critical value, b.,;; = 0.26. For b > b,,;; coherent structures can propagate for inde-
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Fig. 4 Spatiotemporal stochastic resonance (STSR) in the Belousov-Zhabotinsky reaction. Mean spatio-
temporal noise intensity increases from top to bottom: (A) zero, (B) 0.3, (C) 0.6, and (D) 1.0 in normalized
units; (E) shows a snap-shot picture of the grid of cells with various light intensities. The uniformly grey
area on the left identifies the excitable region. Waves are generated in the excitable region and propagate
into the sub excitable region on the right. Optimal noise intensity maximizes the coherence and propagation
length as shown in C. Reproduced with permission from KADAR et al. (1998).
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Fig.5 Spatiotemporal Stochastic Resonance in a network of noisy FitzHugh-Nagumo model neurons.
Noise increases top-to-bottom, A—D. The sub excitable region (b = 0.197) containing the grid of cells with
noises is shown in E on the right (speckled area), and the excitable region (uniform grey area, b = 0.245) is
on the left. The panel E is in registry with the panels above. Note that in B—D waves generated in the excit-
able region on the left propagate unattenuated into the sub-excitable region on the right. (A) No added noise;
waves propagate into the sub-excitable region for a distance then die. (B) Small noise; waves propagate
further. (C) Large noise, waves propagate indefinitely (continue to infinity). (D) Very large noise, waves
again die out after propagating a short distance.
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finite lengths in the medium, whereas for b < b,,;;, they die after propagating a finite
length. Thus this system also is characterized by a threshold; in this case it is a threshold

for propagation of coherent structures. A two dimensional realization of Equations [4]
and [5], computed with spatiotemporal noise on a grid similar to that of Figure 4 E gen-
erates propagating waves and demonstrates STSR in a manner similar to the two-dimen-
sional, light sensitive BZ reaction (BALAzs1 2001, BALAzsI et al. 2001) (see Fig. 5).

BaLAzsI has made a detailed study of the noise mediated length of propagation of
coherent structures in the FN system. The results are shown in Figure 6 A. Moreover, he
found that the propagation velocity is also maximized at the optimal noise intensity, as
shown in Figure 6 B. The latter is an interesting finding, since cognitive processes (in the
brain, for example) leading to conscious states must depend not only on the length over
which information can propagate, but also the speed of propagation.

When FN system is operated under similar conditions, but starting with somewhat
different initial conditions (a straight line initial excitation with truncated ends), the ex-
citable FN medium is capable of generating spiral waves (not shown here). The spirals

are nucleated at the truncated ends. Such waves are important in biological applications
as we mention in the following section.
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Fig. 6 Noise optimized propagation length and velocity in the FN system. (A) Length versus noise inten-
sity (the standard deviation, o, of the Gaussian noise placed in each cell). Error bars are standard deviations

based on 40 trials. (B) Velocity versus noise intensity. For both panels, the excitability parameter was
b =0.20 in the sub excitable, noise mediated region.
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3.3 Noise Mediated Ca** Waves in Glial Cell Networks

It has been demonstrated that noisy spiral waves can be nucleated spontaneously, propa-
gate a finite distance, then lose coherence and die in the noise in a network of cultured
human glial cells (JUNG et al. 1998 b, SHUAI and JUNG 2003, this volume). The noise
(and probably also the coupling strength) is determined by the kainate concentration in
the perfusion wherein the network has been grown. There is an optimal noise (optimal
kainate concentration) that maximizes the coherence, lifetime and propagation distance
of the waves. Thus this system demonstrates STSR. An example is shown in Figure 7
where a coherent wave of the doubly ionized calcium ion (Ca®*) is first nucleated spon-
taneously, lives and grows in size and coherence, then finally loses coherence and dies in
the noise. Glial cells — in the human brain they are specifically called astrocytes — are the
structure upon which the neurons in the brain live. They are thought to maintain the
correct chemical environment for proper functioning of the neural network. However,
more recently it has been shown that waves of Ca®* can propagate in networks of glia
alone, raising the possibility that they can mediate long distance information flow
across the network of neurons.

Fig. 7 A propagating spiral wave in a noise mediated network of cultured human glial cells. Snapshot pic-
tures (1 s intervals) of a Ca** spiral wave nucleated spontaneously by the noise in the upper left panel. Time
advances from upper left to lower right. The wave propagates (grows in size and coherence) only to finally
die in the noise. The lower right panel shows the dying wave with much degraded coherence. The darker
shading indicates a higher concentration of Ca** ions. The concentration within the perfusion was kainate
50 mM.
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Further it has been recently shown that healthy cells cultured from healthy specimens
(rat brain) show a kind of disorder that lacks characteristic time and length scales (JUNG
et al. 1998 a). The disorder is manifest as a power law distribution of a spatiotemporal
coherence measure applied to spontaneously generated structures similar to the one
shown in Figure 7. This behavior can be contrasted with that of cultures of cells taken
from human epileptic patients during surgery. These often show anomalous oscillations
with noisy but definable (in the mean) characteristic time and length scales. Thus in
these cultures, the measure of disorder breaks down, a process that has been identified
as a signature of epilepsy (BALAzsI 2001, BALAZSI et al. 2003).

The results of the BZ chemical experiments and the experiments with cultured cells,
together with various simulations, have been reviewed recently (JUNG et al. 1998 a).
Such experiments and simulations with noisy networks inevitably lead to questions of
information processing, perception and consciousness in the human and animal brain.
We briefly touch upon these topics in the next section.

4. Human Perception and Animal Behavior

Of course, the observation of SR in single elements in the peripheral nervous system
raises an immediate question: Is the animal aware of the enhanced information in its
sensory system? In humans, this question can be answered with psychophysics experi-
ments, and there have been a number of them. In animals, the question can only be an-
swered with behavioral experiments. In this section we very briefly review the current
literature on these studies.

4.1 Noise Enhanced Perception: Visual, Auditory and Tactile

An experiment on human perception of SR was reported a few years ago wherein sub-
jects observed noisy images on a computer screen (SIMONOTTO et al. 1997). The images,
on a 256 grey scale were suppressed below a threshold level. With added noise in each
pixel the threshold was crossed with some probability, and that pixel was painted black
when its threshold was crossed. The noise in each pixel was dynamical (time dependent)
and uncorrelated with that of all other pixels. The information flow in this system has
been analyzed (FREUND 2001). The optimum noise intensity (about half the threshold
value) resulted in the best perceptive performance by the subjects. Though all subjects
showed approximately the same optimal noise intensity, surprisingly, their sensitivity to
fine detail in the image was quite different from one subject to the next. This variability
was reproducible with the same subject showing the same sensitivity (£20 %) for the
same test repeated even after one year. Later fMRI experiments using a similar visual
protocol showed that active brain volume in the visual cortex was the maximum at the
optimal noise intensity (SIMONOTTO et al. 1999).

A recent set of carefully performed psychophysics experiments have revealed SR in
the human visual and auditory systems (WARD et al. 2001). In contrast to the aforemen-
tioned experiments where the threshold was already built into the image, these experi-
ments made use of well known inherent visual and auditory thresholds. The former used
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the perceptive threshold of a 3 Hz beat note obtained by two slightly detuned 1 KHz
tones. The latter employed the visual contrast threshold. The SR effect is small but sta-
tistically significant in human hearing and vision. A previous experiment using the abso-
lute hearing threshold found an approximately 3 dB effect (ZENG et al. 2000).

Another set of psychophysics experiments involved the human tactile sense (COLLINS
et al. 1996a, 1997). In this experiment an indenter applied a momentary mechanical
pressure to the skin of an index finger. The indenter could also be actuated with either
mechanical or electrical noise. Thus SR could be studied with signal and noise intro-
duced via different modalities. Similar experiments were previously performed on a rat
cutaneous mechanoreceptor (COLLINS et al. 1996 b).

4.2 Behavioral SR: Environmental Noise at the Edge of Perception

We finally turn our attention to animal behavior. Does the animal know that there exists
noise enhanced information in its peripheral nervous system? The question can only be
answered with a behavioral experiment. To study this question, a unique fish with a pas-
sive electrosense was chosen. The paddlefish, Polyodon spathula, is a primitive creature
that detects tracks and catches its prey by means of an array of electroreceptors spread
over a unique anterior appendage called the rostrum (see Fig. 8). Throughout its entire
life the fish feeds exclusively on plankton (1 to 2 mm) which it detects by means of the
weak electric field emitted by their feeding and swimming motions (WILKENS et al.
1997).

Can the detectability of the weak electric field signatures of the plankton be enhanced
by electrical noise added to the environment? In particular in the presence of noise can
the fish detect and capture plankton that is further away from its rostrum than it could in

Fig. 8 A juvenile paddlefish Polyodon spathula. The fish is about 14 cm long and is less than one year old.
The rostrum on the anterior is an electro sensitive detector of planktonic prey.
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the absence of noise? The answer to these questions is affirmative. Though the noise
induced behavioral effects are small, they are, nevertheless, measurable with quantifi-
able statistical accuracy (RUSSELL et al. 1999). Juvenile paddlefish were placed in a
swim mill and the water stream flowing past them was seeded with Daphnia zooplank-
ton. The capture probability distributions were measured in the presence of electric field
noise of various strengths and, as controls, in the absence of noise. The capture distribu-
tions were observed to widen slightly at the optimal noise intensity. For large noise the
feeding rate decreased. The Fisher information at the rostrum due to the plankton signal
has been calculated and found to follow the measured capture distribution (GREENWOOD
et al. 2000). In the wild it may be that the electrical noise is produced by a swarm of
zooplankton. An SR theory based on the threshold model and including modern informa-
tion measures using the swarm model has recently been published (FREUND et al. 2002,
see also FREUND 2003, this volume).

5. Prospects

Does SR endow animals with an evolutionary advantage? This must be one of the most
significant research questions that can be addressed, and it presents researchers with a
substantial challenge. One can muse and speculate that the evolution of most sensory
systems is indeed driven by naturally occurring stimuli (either predator or prey) at the
threshold of perception. Otherwise, what has driven some animals to evolve truly re-
markable sensory sensitivities? These include the electric field sensitivities, 0.5 to
1 uV/em for our paddlefish (RUSSELL et al. 1999) and other freshwater passively electro-
sensitive fish, 1-10 nV/cm for sharks and rays (KaLmuN 2000), 10’s of nm water
displacements detectable by crayfish (DoucLAss et al. 1993), 10’s of nm vibrational
amplitudes detectable by some frogs, etc. (BARTH and ScHMID 2001). For that matter,
what was the evolutionary driver for the paddlefish’s long anterior rostrum shown in
Figure 8 if not the continual competition to detect evermore distant plankton (by
sensing ever weaker signals)? If we grant this, and admit that noise is ubiquitous in the
natural environment, then the ingredients required for SR were present probably since
life began on this planet. Indeed, it has been suggested that SR may have played a role
in prebiotic evolution as well (CARERI 2000).

But the only experiment that connects SR directly to evolution was designed and
carried out by JARAMILLO and WIESENFELD (1998). They studied bundles of cilia in the
inner ear of leopard frogs. They simultaneously measured the neural response while ma-
nipulating the mechanical motion of the bundle. They performed an SR experiment by
moving the cilia with a near sub-threshold periodic signal to which was added varying
amounts of mechanical noise. They found that the optimal noise quantified by its root-
mean-square displacement corresponded (20 %) to the natural Brownian motion of the
cilia bundle. It would seem virtually impossible that this correspondence could have
arisen simply by chance. What it almost certainly means is that the frog auditory system
evolved to make use of SR at the threshold of detectability.

We can be certain that in the future other bright scientists will devise ways of testing
hypotheses based on evolution and SR.
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With 1 Figure

Dynamics has become an interdisciplinary subject today. Initially it was a branch of phys-
ics: following LEIBNIZ’ and NEWTON’S invention of differential equations and the solu-
tion of the two-body problem, many subsequent generations of mathematicians and phys-
icists tried to use extended analytical methods to tackle more complicated tasks such as
the three-body problem, which, as we know now, is non-integrable. A major break-
through was achieved by POINCARE who developed a more qualitative way that was very
powerful to treat systems for which the temporal evolution is governed by nonlinear
rules. In this way nonlinear oscillators could be better understood and their successful
application to technologies such as radio and lasers marked an important progress to-
wards the field of nonlinear dynamics as it presents itself today. In fact, it was the avail-
ability of powerful computers from the 1950s on that made the experimentation with
nonlinear equations possible. Through the pioneering discovery of chaotic motion on
strange attractors by LORENZ, as well as from RUELLE and TAKENS theoretical work on
the onset of turbulence in hydrodynamics we are now quite familiar with the complex
behavior of nonlinear systems, e. g. the occurrence of oscillations, bistability, and deter-
ministic chaos as introduced, for instance, by STROGATZ (1995) and thoroughly reviewed
by Cross and HOHENBERG (1993).

Biology is certainly one of the disciplines that deals with systems of a particularly
high degree of complexity, starting with the life of a single cell and culminating in the
fascinating structure and function of our brain. Nowadays the ideas and methods of non-
linear dynamics find rapidly increasing applications in biological systems of any hier-
archic level of organization and many reviews on that topic are available (HEss 1997,
GOLDBETER 1998). Since one of the prerequisites of living nature is their openness to
exchange energy and matter with their environment, the concepts of open systems, e. g.
nonequilibrium thermodynamics, apply to the elucidation of the mechanisms that are
responsible for their complex behavior in time and space. At this point chemistry comes
into play, because many of the phenomena of temporal and spatial self-organization are
also observed in chemical reactive media evolving far from equilibrium. Periodic and
aperiodic oscillations, stationary patterns and traveling waves are quite commonly
found in chemical experiments (see SCHNEIDER and MUNSTER 1996, KAPRAL and SHoO-
WALTER 1995). These serve, therefore, frequently as laboratory models in that their prop-
erties may reflect the behavior of “real” systems in the living world. In particular, appli-

79



Stefan C. Miiller

cations to biomedical problems, e. g. the treatment of heart diseases or the understanding
of the cortex, emphasize the relevance of this field (WINFREE 1987).

Thus, the topic of this section “Nonlinear Dynamics and Biology”” encompasses many
modern disciplines, all interconnected by the common goal to find answers to important
questions such as: can we understand many-component, complex, dynamic phenomena
in spatially extended nonlinear systems as they apply to physics, chemistry, biology,
medicine, ...? What are well characterized examples where temporal or spatio-temporal
pattern formation accomplishes biological function, including the highly diversified
structure of the human brain? Might patterns lead to novel medical therapies? What is
the role of intrinsic noise on the emergence of organized behavior as compared to the
deterministic evolution of the systems?

The majority of the contributions to this Section report on research of complex behav-
ior in time, i.e. the spatial degrees of freedom are not explicitly considered.

To start with, research results on one of the topics of the previous Section are consid-
ered, showing the high attention devoted currently to stochastic aspects of biological
dynamics. J. A. FREUND gives an account on the modeling and the theory of stochastic
resonance, treated before on the experimental level by F. Moss. FREUND provides an
analytical approach to the influence of noise on subthreshold signal detection and ap-
plies the idea of beneficial fluctuations to the paddlefish and to Daphnia swarms in their
natural environment. The work of J. W. SHUAI and P. JUNG also emphasizes the impor-
tance of stochasticity, in this case for the fascinating phenomenon of sparks or puffs of
calcium ions in the cell that form transient and fluctuating spatial structures. They intro-
duce a simplified method to describe the statistical properties of these puffs efficiently
thus contributing to the work on calcium signaling, which is one of the most fascinating
activities in actual biophysical research on cellular events. Calcium dynamics with all its
crucial relevance for intracellular signal transduction and communication is also the top-
ic in the contribution by M. WACKE et al. These authors investigate calcium dynamics in
Chara algae. They develop a model for the complex behavior of calcium mobilization in
this plant cell under electrical stimulation and show good agreement with the corre-
sponding experimental investigations of action potentials.

What happens to the dynamics when several or only a single enzyme become respon-
sible for governing the temporal evolution of a system? This question is treated in the
contribution by M. HAUSER: He finds simple and complex rhythmic behavior and de-
scribes in this context a recent approach to investigate the dynamical properties of com-
plex biological systems in studying so-called biomimetic systems. These consist of syn-
thetic components, which are specially designed to reproduce the characteristic structural
and reactive features of their natural counterparts. By focusing on the key features, bio-
mimetic systems achieve a considerably lower degree of complexity that often allows the
investigation of topics that in the natural systems are difficult to approach. Following the
relative simplicity of a biomimetic system, the contribution by W. EBELING and
F. SCHWEITZER takes us to the other end of high complexity. They discuss in their arti-
cle on “Self-Organization, Active Brownian Dynamics, and Biological Applications”
fundamental aspects of biological networks, a topic which belongs to the frontiers of
modern statistical physics. Beyond the consideration of more general aspects of com-
plexity they include chapters on the collective dynamics in swarms, biological aggrega-
tion and formation of insect trails and show that the coherent motion underlying these
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phenomena can be suitably treated by their approach of active Brownian particles.
Swarming is also of high relevance in the article by A. ORDEMANN et al. The authors
show and analyze the amazing, self-organized vortex motions of the zooplankton Daph-
nia under well controlled laboratory conditions. Based on the impressive experimental
material a model of random walkers is applied to reproduce the observations by simula-
tions.

Having mentioned earlier the treatment of networks and the dynamics developing on
them, we now get into the most complex network of all: the brain. Two important ques-
tions related to brain dynamics are addressed. S. GRUN and coauthors deal with the co-
ordinated firing activity of groups of neurons. They introduce a method to analyze ex-
perimental data that provides evidence for different time scales involved in cortical
processing, and focus on the possible role of unitary events that they have discovered to
occur in short time windows. Finally, the last contribution of this Section by P. A. TAss
reports on the desynchronization of clusters of coupled oscillators on the basis of sto-
chastic methods. We see again, how important noise and stochastic effects are in this
field. The model calculations are aimed to provide insight into the efficiency of differ-
ent types of pulses with respect to their interference with the collective dynamics of the
system. This study could help to develop better therapies by deep brain stimulation for
neurological patients.

This last and several other research results presented in this Section raise the interest-
ing question, how the investigated dynamics develops, if the spatial extent of the system
is explicitly taken into account, opening a wide area of additional questions to be ad-
dressed in future work.

It may be the appropriate place here to add some more aspects on the rich topic of
spatial and spatiotemporal self-organization, as it occurs in many biological systems.
Among the large number of possible interactions that can lead to pattern formation there
is one “prototype” coupling mechanisms which has attracted specific attention by theo-
rists and in experiments. We allude to the coupling of an autocatalytic (bio)chemical
reaction with a transport process such as molecular diffusion, convection, chemotaxis,
or others. It is the reaction-diffusion coupling, which has been most thoroughly treated
so far. In this case, the patterning process is a consequence of the competition between
an activator and an inhibitor substance, and the type of pattern that evolves depends sen-
sitively on the diffusivities of these competing species. One observes stationary struc-
tures, some of which are referred to as Turing structures (TURING 1952, see also MEIN-
HARDT 1982) and dynamically moving patterns (waves and fronts, see references below).

As mentioned earlier, one often finds suitable model systems in the chemical labora-
tory that exhibit behavior analogous to that found in biology: in the case of wave or front
propagation one often refers to the famous Belousov-Zhabotinsky reaction, which is the
bromination of malonic acid in the presence of a catalyst (ZAIKIN and ZHABOTINSKY
1970). This reaction may be prepared in an oscillating regime and then changes its color
periodically between red (reduced) and blue (oxidized state). Or it is prepared as an ex-
citable system, resting in the reduced state until a high enough stimulus leads to the
propagation of a blue oxidation pulse through the reduced medium (KAPRAL and
SHOWALTER 1995, MULLER et al. 1985). Due to a refractory period following the excita-
tion, there evolve wave trains in the layer which can have circular or spiral shaped geo-
metry and are characterized by a specific wavelength (Fig. 1 A).

Nova Acta Leopoldina NF 88, Nr. 332, S. 79-86 81



Stefan C. Miiller

Fig. 1 Four examples of wave propagation in excitable media: (A) Spiral wave in the Belousov-Zhabotinsky
reaction, (B) NADH and proton waves during oscillatory glycolysis, (C) wave pattern during the aggrega-
tion of amoebae cells of the slime mold Dictyostelium discoideum, (D) wave of spreading depression in
chicken retina.

During the last decade an increasing number of experimental results have demonstrated
that traveling waves of concentration changes occur in a variety of different cell types.
Some examples are calcium waves in frog oocytes (LECHLEITER et al. 1991), heart cells
(WIER et al. 1987), liver cells (LIN et al. 1994) and others (for review see JAFFE 1991),
NADH- and proton waves in neutrophils (PETTY et al. 2000) and yeast extract (MAIR and
MULLER 1996), cAMP-waves in cell layers of slime mould (ToMCHIK and DEVREOTES
1981) and spreading depression waves in the cortex (BASARSKY et al. 1998).
Intracellular waves: Propagating waves of ionic composition are observed in a multi-
tude of different cell types. Their generation takes place either spontaneously or when
the cells are treated with external stimuli of signal transduction pathways. In many cases
the initial trigger for generating the waves is the local release of IP; from the plasma
membrane into the cytosol where it binds to IPs-receptors of IPs-sensitive calcium
stores (BERRIDGE and IRVINE 1989). The subsequent propagation of the wave is
mediated by calcium diffusion to adjacent calcium stores. This calcium-induced-cal-
cium release (CICR) mechanism represents a reaction-diffusion coupling and therefore
calcium waves exhibit the basic characteristics of excitation waves. For example, mu-
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tual annihilation is frequently observed (WUSSLING et al. 1997). An additional feature
typical for biological systems is that the high degree of connectivity of metabolic net-
works and morphological substructures offers several possibilities for increased com-
plexity of these patterns.

Another example of intracellular waves are NADH- and proton waves of the energy
metabolism, i.e. glycolysis. Here, an autocatalytic reaction is catalyzed by the enzyme
phosphofructokinase (PFK) via positive feed-back regulation by its product ADP
(GHOsH and CHANCE 1964, HEss et al. 1969). Allosteric regulation and cooperativity
of the PFK subunits are the kinetic basis that drives the enzyme into an oscillatory state
(GOLDBETER and LEFEVER 1972). Under these circumstances the spontaneous formation
of traveling NADH-waves has been observed (MAIR and MULLER 1996). They form cir-
cular or spiral shaped patterns (Fig. 1 B) and show mutual annihilation, thus resembling
the patterns and propagation dynamics of calcium waves or chemical reaction-diffusion
waves (see Fig. 1 A). Corresponding model simulations have confirmed this view
(GoLDBETER and LEFEVER 1972). Note, that the generation of calcium waves consumes
ATP, whereas glycolysis produces it.

Intercellular waves: Propagation of reaction-diffusion waves from cell to cell are be-
lieved to play a crucial role for communication between cells. This kind of waves is
generated from some pacemaker cells that excrete ions or metabolites via an autocatalyt-
ic process. Transmission of the waves through a cell population or tissue is then
mediated via reaction-diffusion coupling, whereby the excreted substances act concomi-
tantly as the signaling molecules. There are numerous examples of intercellular waves,
e.g. electrical waves in the heart muscle (DAVIDENKO et al. 1992), calcium waves in
tissue (for review see SANDERSON 1996), aggregation patterns in slime mould (GERISCH
1971) or spreading depression waves in the brain (GORELOVA and BURES 1983).

Let us look closer at two examples: The life cycle of Dictyostelium discoideum is
characterized by morphogenetic changes that switch the organism between unicellular
and multicellular states. The switch between these two states is induced by aggregation
of unicellular, motile amoeboid cells into slugs which later develop into fruiting bodies.
Directed movement of the cells towards aggregation centers occurs via chemotaxis. For
this, some pacemaker cells release the chemoattractant cAMP in an autocatalytic process
(MARTIEL and GOLDBETER 1987). The external cAMP diffuses to neighboring cells,
where it induces a new autocatalytic release of cAMP, leading to a reaction-diffusion
wave of the chemoattractant. The shape of the waves can be either circular or spiral
shaped (Fig. 1 C). Spontaneous break up of circular waves into rotating spirals is more
often observed at higher cell densities. Annihilating waves mark the boundary of aggre-
gation territories which result from the multitude of aggregation centers. It should be
noted, that propagating waves occur also in the multicellular slug, where a transition
between 3-dimensional scroll waves to 2-dimensional planar waves marks the boundary
between prestalk and prespore cells, respectively (STEINBOCK et al. 1993).

Spreading depression (SD) is a phenomenon characterized by a sudden break down
of neuronal activity in the brain. First observed by LEAO in 1944, it has been the subject
of numerous studies. SD spreads over brain tissue in a wave-like manner. It has been
observed in the hypothalamus, cortex and retina. Once initiated, the SD waves propa-
gate within the different cell layers of brain tissue from cell to cell, probably mediated
via extracellular ion changes. At present, there is no conclusive model that can explain
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the phenomenon of SD. Despite the lack of information about the basic mechanisms, it is
likely that SD waves represent excitation waves, because they show all their characteris-
tics as, for example, unidirectional movement, mutual annihilation, formation of rotating
spirals (Fig. 1 D), or their dispersion relation (BRAND et al. 1997). There are several ex-
perimental and theoretical contributions that point to an impact of SD waves for the mi-
graine aura (LAURITZEN 1994, DAHLEM et al. 2000).

In summary, the contributions to this Section and the discussions of the presented
material provide an excellent look into the wide realm of nonlinear dynamic behavior,
spatiotemporal self-organization and the either beneficial or destructive effects of noise,
emphasizing the important role of this interdisciplinary research field for physics, chem-
istry, biology and biomedicine.
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Motions of Daphnia in a Light Field:
Random Walks with a Zooplankton
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With 6 Figures

Abstract

To learn more about the self-organized vortex-like motions observed in the field in groups of animals which
are swarming as a predator confusing mechanism, such as schools of fish and flocks of birds, we investigate
swarms of the common zooplankton Daphnia, which infrequently have been observed to perform similar
vortex-like motions. Reproducibly inducing swarming Daphnia to carry out the vortex motion in our lab
reveals that the water between the Daphnia also circles in the same direction as the animals. To characterize
their behavior in a more defined setup, we study the motion of single Daphnia, as well as swarms, with re-
spect to a vertical light shaft, which acts as the optical marker for swarm formation. We observe the develop-
ment of a circular motion in both directions around this light shaft for swarming Daphnia and, surprisingly,
also for individual Daphnia. Based on experimental data we developed a simple stochastic model of random
walkers with short-range correlation and attraction to light to successfully simulate the observed behavior of
Daphnia in light fields.

Zusammenfassung

Um die Bildung von wirbelférmigen Bewegungen genauer zu verstehen, die selbstorganisierte Tiergruppen
wie Fischschulen und Vogelscharen als Verwirrungsmechanismus gegen ihre Jiger einsetzen, untersuchen
wir unter Laborbedingungen das Verhalten von Schwirmen des Zooplanktons Daphnia, bei welchen auch
derartige Wirbelbewegungen beobachtet wurden. Durch reproduzierbares Hervorrufen eines Daphnia-Wir-
bels im Labor konnten wir feststellen, daf sich das Wasser innerhalb eines Wirbels in die gleiche Richtung
dreht wie die Daphnia. Um das Verhalten von Daphnia unter konstanteren Bedingungen untersuchen zu
konnen, haben wir die Bewegung eines Tieres wie auch eines Schwarms im Verhiltnis zu einer die
Schwarmmarkierung bildenden Lichtsdule untersucht. Es ist zu beobachten, dafl sowohl Daphnia-Schwirme
als erstaunlicherweise auch individuelle Daphnia kreisférmige Bewegungen in beide Richtungen um die
Lichtséule ausfiihren. Basierend auf den experimentellen Daten haben wir ein einfaches Random-Walk-Mo-
dell mit kurzreichweitiger Korrelation entwickelt, das das beobachtete kreisende Verhalten von Daphnia in
einem Lichtfeld erfolgreich beschreibt.

1. Introduction
Self-propelled animals living and moving in a three-dimensional environment and being

at high risk to be spotted and eaten by visually hunting predators are commonly known
to form swarms as a predator confusing mechanism (HUMPHRIES and DRIVER 1967, Ha-
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MILTON 1971, PuLLiaM 1973, see also PARRISH and EDELSTEIN-KESHET 1999, OKUBO
and LEvIN 2002). Examples of such animals are species of planktivore fish, e.g. sar-
dine, mackerel and anchovetta (PARTRIDGE 1982, HALL et al. 1986), as well as some
birds (CARACO et al. 1980) and zooplankton (JAKOBSEN et al. 1994, KvaMm and KLEIVEN
1995). Since the prey usually cannot flee the predator due to its lower speed, it evolutio-
narily evolved to form dense groups of animals with a sharp boundary. The confusing
effect was shown to increase by increased number of animals in the swarm (NEILL and
CULLEN 1974), increased density (MILINSKI 1979), and increased uniformity (OGHUCHI
1978) of the swarm. Animals outside an existing swarm are at the highest risk to become
prey (BREWER and COUGHLIN 1996). These prey swarms are self-organized systems (see
e.g. PARRISH and EDELSTEIN-KESHET 1999, CAMAZINE et al. 2001, OxUBO and LEVIN
2002), there is no leader or global recipe for the individual animals to react to and the
pattern on the global level is an emergent property of the interactions on the local level.

Anecdotal evidence exists about swarming fish and birds performing a fascinating
coordinated vortex-like motion in the field. These patterns are not well investigated,
mostly due to the size of the animals, and therefore the physical, biological, and chemi-
cal reasons for vortex-swarming are not well understood. A feasible behavioral explana-
tion for vortex-swarming to occur might be that circling is the least energy consuming
possibility for a group of animals to stay close together as a localized swarm without
frequently bumping into each other, although the individual members of the swarm have
to constantly move to maintain height in their three-dimensional environment. The aim
of the present work is to gain more insight into the physical and behavioral aspects of
vortex-swarming in prey animals.

The paper is organized as follows: In the remaining part of Section 1 existing theore-
tical models of self-propelled particles simulating circular motion in biological systems
as well as experimental observations of such motions are briefly reviewed. In Section 2
we first give an introduction into general zooplankton behavior and then explain our
experimental setup and the results for tracking the motion of Daphnia in a light field as
well as in the dark. In Section 3 we present a random walk model with short-range cor-
relation and attraction to light which successfully simulates the observed horizontal cir-
cling behavior of Daphnia in a light field. Finally, Section 4 summarizes our main ob-
servations and concluding remarks.

1.1 Models of Self-propelled Agents Performing a Circular Motion

Lately, models of self-propelled agents simulating the physical aspects of self-organized
swarming systems have been found of great interest to theoretical physicists. Based on
the models of Self-propelled Interacting Particles (VICSEK et al. 1995) and Active
Brownian Particles (SCHIMANSKY-GEIER et al. 1995) several variants of these models
have been developed which lead to a circular behavior of the agents (CzIROK et al.
1996, SCHWEITZER et al. 1998, RAPPEL et al. 1999, EBELING and SCHWEITZER 2001,
SCHWEITZER et al. 2001, LEVINE et al. 2001, see also VICSEK 2001). Apart from these
recent models, several closely related older swarming models exist outside the physics
literature (OKUBO and ANDERSON 1984, REyNoLDs 1987, HutH and WISSEL 1992). It
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is instructive to shortly review the ingredients of the two main recent models that
successfully lead to circular motion of the agents.

In the discrete two-dimensional many-particle model of LEVINE et al. (2001) each
particle, characterized by mass m;, position x;, and velocity V;, experiences a self-propel-
ling force f;, a friction force with coefficient f as well as an long range attractive and a
short range repulsive force between the particles given by an exponentially decaying
interaction potential U:

midv; = of, — v — VU 9% = 7. [1]

The model has been investigated using two different rules for the determination of the
self-propelling force f;: either (i) without any averaging

fi=" 2]

or (ii) aligning it with the average velocity direction of the neighboring particles within
interaction length /.,

fi=2_ viexp(=[% - 5|/L). [3]
J#i

For certain parameter settings LEVINE et al. (2001) find stable states with circular motion
of the agents, independent of the explicit form of the interaction potential and for various
initial conditions such as randomly distributed agents having velocities of constant mag-
nitude but random direction. Depending on the implementation of the self-propelled
force the agents either (i) circle both clockwise and counterclockwise randomly or (if)
circle all in the same direction after a certain transition time, which breaks rotational
symmetry and leads to a vortex state. The circular motions are observed to be stable
under reasonable noise and the agent density always drops off sharply at the boundary
of the agent swarm similar to the boundaries of biological swarms.

In the two-dimensional single-particle model of Active Brownian Particles with an
internal energy depot (SCHWEITZER et al. 1998) the agent, characterized by mass m, po-
sition X;, and velocity V;, experiences a self-propelling force which is connected to an
energy storage depot e(?), a friction force with friction coefficient v, an external force
given by a parabolic potential U(V), and noise F(7):

mdy = dye(t)V — yov — VU(X) + F(t),  Ox=7. [4]

The internal energy depot equation consists of the terms for the space dependent take-up
of energy ¢(¥), the internal dissipation, i.e. metabolism, and the conversion of internal
energy to kinetic energy:

Dre(t) = q(%) — ce(t) — dy?e(t). [3]

SCHWEITZER et al. (1998) consider both a uniform energy supply, i.e. g(¥) = qo, and
patchy energy sources. Carrying out an energy depot analysis for ¢(¥) = ¢o leads to a

Hopf bifurcation with a bifurcation parameter u = g _ 2 For x4 < 0 the model shows
Y0
simple (passive) Brownian motion while for x> 0, i.e. supercritical supply of energy

q0> qg"it = yocl/d,, the agent moves to a stochastic limit cycle where the circling radius
depends on the ratio of energy take-up to used energy. Also, based on this model
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many-particle models with various interactions between the Active Brownian Particles
were investigated (EBELING and SCHWEITZER 2001, SCHWEITZER et al. 2001). It was
found that incorporating an attraction to the center of mass leads to clusters of agents
circling in both directions and changing their circling direction due to the noise, while
coupling the mean angular momentum of the agents breaks the symmetry of the system
under certain conditions leading to circling of all agents in the same direction and thus
forming a vortex state.

1.2 Experimental Observations of Self-organized Vortices in Biological Systems

Despite the many theoretical models, experimental observations of circling behavior in
biological systems under well defined conditions have up to now only been reported for
disc-shaped aggregates of the bacteria Paenibacillus vortex (CzIROK et al. 1996) and
aggregated cells of the amoeba Dictyostelium (RAPPEL et al. 1999). These systems are
on a low evolutionary level and the physical and behavioral aspects of the observed mo-
tions are therefore difficult to compare with the ones for a group of fish or birds. How-
ever, several accidental observations of different freshwater zooplankton performing a
horizontal circular motion under laboratory conditions (YOUNG and GETTY 1987, YOUNG
and TAYLOR 1990, BUSKEY et al. 1996) as well as one vortex-swarming incident of the
oceanic zooplankton Anchylomera blossevilli at a reef region with sandy bottom near
Hawaii (LoBEL and RANDALL 1986) have been reported. It is striking that in all these
observed circling events special light conditions were recorded which can be roughly
summarized as the existence of a vertical shaft of light in the water to which the animals
are attracted. For example in the case of the vortex swarms of Anchylomera blossevilli,
where several rotating patches 2-3 m in diameter formed at the surface at noon, the
water was found to be exceptionally clear and calm with many planktivore fish present.
Unfortunately, the observation of individual behavior was not possible, so the physical,
chemical and biological basis for the vortex-swarm could not be established. But swarms
of zooplankton promise to be a biological system which can be investigated in detail
under defined laboratory conditions to learn more about the occurrence of vortex-swarm-
ing in birds and fish.

2. Experimental Observations of the Zooplankton Daphnia

Infrequently also a swarm of the freshwater zooplankton Daphnia (Fig. 1 A) has been
observed to perform a vortex-like motion in our laboratory (see Fig. 1 B), but the speci-
fic circumstances for this behavior to occur have been found difficult to define. Repro-
ducibly inducing Daphnia to vortex-swarm surprisingly reveals that the water between
the Daphnia circles in the same direction as the Daphnia themselves. The turning direc-
tion of the vortex appears to be random. Important conditions for a vortex-swarm to form
are the presence of predator kairomones — in our experiment water from a goldfish tank —
and freshly crushed Daphnia, high enough food density — in our case live green algae
Scenedesmus quadricula — as well as light from above and the sides and a reflective
bottom of the aquarium — in our set-up room light and a 40 cm diameter cylindric glass

90 Nova Acta Leopoldina NF 88, Nr. 332, S. 87-103



Motions of Daphnia in a Light Field: Random Walks with a Zooplankton

aquarium. Although the exact light conditions necessary for a vortex-swarm to occur are
again not possible to define for this set-up, the above observations are in good agreement
with the conditions reported for the vortex-swarm of Anchylomera blossevilli as well as

B

Fig. 1 (A) Lateral view of the common zooplankton Daphnia (typical body lenght: 0.5-1.5 mm) with a
juvenile in the brood pocket, the head with the compound eye and the swimming antennae is visible on the
right. Picture by D. RUSSELL with permission. (B) Side-view of vortex-swarming Daphnia in a rectangular
aquarium. Picture by D. RUSSELL with permission.
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with earlier experiments. It was reported that the presence of predator kairomones and
chemical clues of eaten Daphnia enhances the tendency to swarm in Daphnia (PUA-
NOWSKA 1994, Kvam and KLEIVEN 1995, JENSEN et al. 1998), that the major cost of
swarming is limited food availability as the food density significantly decreases inside
a swarm (BERTRAM 1978, JAKOBSEN and JOHNSEN 1988) and that visual clues are impor-
tant for swarming behavior in zooplankton (BUSKEY et al. 1996, JENSON et al. 1999).

The above mentioned observation that water inside a vortex-swarm of Daphnia forms
a vortex itself gives rise to several general questions: (i) Is this also the case for swarm-
ing fish? Most likely this is not the case (PARTRIDGE and PITCHER 1979), although it is a
controversial topic (WEIHS 1973). It clearly is not the case for birds. (ii) Do Daphnia
align with their neighbors as fish (PARTRIDGE and PiTcHER 1980) and birds (Potrs
1984) do? In case they do align, what clues do they use for alignment, e. g. phototaxis
or mechanoreceptors? It is known that fish (OkuBo 1986) as well as birds (Ports 1984)
align visually. (iii) How does a vortex form? To shed more light on these questions it is
necessary to perform more defined laboratory experiments with Daphnia.

2.1 Known Daphnia Behavior

As Daphnia are a well investigated species for various reasons, and are very old from the
evolutionary point of view, a possible set-up for a more well defined experiment to
investigate vortex-swarming in Daphnia should take into account the following observa-
tions. Daphnia are known to heavily depend on phototaxis to sense their environment,
e. g. when searching for food (YOUNG and GETTY 1987) as well as confusing and avoid-
ing their predators by swarm formation (JENSEN et al. 1998) or performing Diel Vertical
Migration (ZARET and SUFFERN 1976, RHODE et al. 2001). They are strongly attracted to
light in the visual range and repelled from UV light, being more sensitive to relative
changes in light intensity than to absolute intensity. Most likely Daphnia cannot form
an image with their eyes at all, or have very limited visual acuity compared to fish or
birds (BucHANAN and GOLDBERG 1981, OkuBO and LEVIN 2002), but they can deter-
mine wavelength, intensity, and direction of the light (SMITH and MAcAGNO 1990). No
direct visual alignment between Daphnia has been detected (OKUBO and LEVIN 2002)
besides the observed external alignment perpendicular to the plane of polarization of
the light (YOoUNG and TAYLOR 1990, SCHWIND 1999, NovALEs and BRowmAN 2000). In
addition to phototaxis they also make use of their chemotaxis (LARSON and DoDSON
1993) and the sensation of water motion with their mechanoreceptors (HAURY and
YAMAZAKI 1995). As it is assumed that no means of direct long range communication
between Daphnia exists (LARSON and DopsoN 1993), they have to be individually at-
tracted to a landmark to aggregate. These landmarks are believed to be the aforemen-
tioned shafts of light in the visual range (JENSEN et al. 1999), as it is also the case for
the zooplankton copepod (BUSKEY et al. 1996) and mosquitos (GIBSON 1985). The
swimming behavior of Daphnia is dominated by the fact that they live in a relatively
low Reynolds number environment (ZARET 1980), they move with an average “hop-
ping” rate of approximately three moves per second and their overall speed is
4-16 mm/s with a sinking rate of approximately 3 mm/s (DopsoN 1996). Therefore
their motion can be modeled well by self-propelled discretely maneuvering agents.
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2.2 Daphnia in a Light Field

Following the above lines a simpler and more well defined set-up to investigate circular
motion of Daphnia consists of a rectangular aquarium (50 %20 cm, water level 25 cm)
with a vertical translucent plastic tube mounted in the middle which is illuminated from
above by a fiber optic illuminator (see Fig. 2 for details), thus forming a shaft of light in
the visual range. Besides this light field with radial symmetry to which the Daphnia are
attracted, the room is dark. After placing many Daphnia in the algae water and leaving
them to acclimate and to distribute uniformly for at least 15 min, the fiber optic illuminator
is switched on. Being individually attracted to the optical marker a substantial proportion of
Daphnia can be observed to circle around the shaft in both directions (see Fig. 3 A), fre-
quently reversing their circling direction. The radius of their circles is large enough to ex-
clude the possibility that this behavior occurs simply due to the hydrodynamic sensation of
an artificial object with their mechanoreceptors, since experiments show that Daphnia can
sense static objects only in about one body length distance (HAURY and YAMAZAKI 1995),
and since a similar circling behavior was observed in recent experiments when using a high
intensity flashlight shining vertically into the water instead of the solid light tube (NIHONGI
and ORDEMANN 2002). Therefore this artificial vertical solid light shaft induces Daphnia to
circle around it in both directions in the horizontal plane. No vortex formation, i. e. circling
of all Daphnia in the same direction, has been observed. This is most likely due to the solid
light shaft preventing a fluid dynamic vortex to occur, since for the set-up with the flashlight
vortex-swarming can be induced under certain environmental conditions, most importantly
by high enough Daphnia density (NIHONGI and ORDEMANN 2002).

D fiber optic illuminator
video recorder ¢
e IR-filter
mask [ light shaft
computer IR-
[:] WWWWW e illuminator
A - —
aquarium
IR-camera | l /
—l__—__] first surface
VIS-filter mirror

Fig. 2 Design of the experimental setup. For reasons of clarity not shown is the second infrared camera for
side-view recording of the aquarium. Near infrared background illumination to which the Daphnia are blind
(SmiTH and MACAGNO 1990) is used for recording purposes, to light up the Daphnia independently of the
light in the visual range emitted from the light shaft. The light sources, aquarium and cameras are housed in
a light-tight room, computer and video recorder are in a separate compartment. Care was taken to reduce
any kind of reflection in the aquarium area by using masks of low-pile velvet.
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Fig. 3 Observation of Daphnia in the aquarium with centred vertical light shaft (radius of light shaft
5 mm, light intensity 10~ W/m?). (A) Bottom view of the aquarium showing five successive positions, taken
in intervals of 0.3 s, of many simultaneously moving Daphnia. The lighter dots mark the positions earlier in
time. Most of the Daphnia close to the center can be observed to circle in both directions, in the outer re-
gions several Daphnia can be seen to move towards the light. (B) Horizontal projection of the track of one
Daphnia circling individually around the light shaft (recorded time f,.. = 146 s, frame rate 1 picture/s).
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To investigate the motion of Daphnia in the light field in more detail and to be able to
analyze the path of Daphnia using the automatic tracking software Chromotrack® Ver-
sion 4.02 from San Diego Instruments, we placed several single Daphnia in the aqua-
rium one after each other. Surprisingly, we found some of them circling around the light
shaft. A typical track of an individually circling Daphnia is shown in Figure 3 (B). Note
the nearly constant radius of circling throughout the recording, which might be explained
by the observation that Daphnia can retrace their own path — or the path of a fellow

0.4

- 180 - 90 0 90 180
range of ©

5 15 25 35 45 55
r [mm)]

B

Fig. 4 (A) Probability distribution P(0) of the angle € between the heading of the Daphnia and the direc-
tion to the light shaft for every move, determined from data of 624 moves of the tracks of four different indi-
vidual Daphnia observed circling around the light shaft. (B) Probability distribution P(r) of the distance r of
the Daphnia to the light shaft, determined from the same set of data as in (A).
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Daphnia — by detecting small density gradients in the water produced by the motion of
their feeding legs and antennae (GRIES et al. 1999). The fact that single Daphnia also
circle indicates that, for Daphnia, circling is not a collective motion emerging in a
swarm of animals, e.g., due to the alignment of neighboring animals as observed for
fish and birds, but an individual reaction to a certain light pattern. This is in agreement
with the above mentioned observation that Daphnia cannot actively align with their
neighbors using their phototaxis (OKuUBO and LEVIN 2002). The vortex motion evolving
at a natural light marker or a light cone of a flashlight can then be explained as a self-
organization phenomenon occurring for high enough Daphnia density when due to ran-
dom fluctuations one circling direction is sufficiently more pronounced and the positive
feedback of the water drag forces more and more Daphnia to circle in the same direction
and thereby breaking the symmetry of the system. The detailed physical aspects of the
fluid dynamic vortex to occur need more investigation but most likely are a consequence
of the low Reynolds number environment of Daphnia (ZARET 1980).

As the dominating part of the motion of single Daphnia in the light field takes place
in the horizontal plane it is sufficient to restrict the characterization of the observed cir-
cling behavior to two dimensions, analyzing only the bottom-view pictures of the aqua-
rium. To quantify the amount of circling we calculated the probability distribution P(0)
of the angle 0 between the heading of the Daphnia and the direction to the light shaft for
every move for several Daphnia observed circling around the light shaft (see Fig. 4 A) as
well as the probability distribution P(r) of the distance r of these Daphnia to the light
shaft (see Fig. 4 B). For circling to occur it is necessary (but not sufficient) that P(0)
has maxima at =90° and P(r) shows a maximum relatively close to the light shaft, both
of which is visible in Figure 4. Further on we determined the average length of circling
in one direction, i. e. either clockwise or counterclockwise, before reversing the direction
to be 11.8 moves. This translates to circling more than one full turn on average when
combined with the average circling radius (see Fig. 4 B) and an approximate average
move length of 3 mm.

2.3 Daphnia in the Dark

For comparison with the above described experiment in the light field and with self-pro-
pelled agent models it is instructive to observe the behavior of Daphnia without them
being attracted to light, that is tracking Daphnia in the dark. It is assumed that the ani-
mals, taking into account their chemotactic and hydrodynamic perception radius, strive
to maximize the covered territory to increase their encounter rates (GERRITSON and
STRICKLER 1977). A typical track of a Daphnia in the dark is shown in Figure 5 A in 2-
dimensional projection. Measuring the distribution of the turning angle (DTA) between
successive moves of such tracks yields a bimodal symmetric distribution with maxima
approximately at £35° (see Fig. 5 B). Comparing this result with previously reported
track analysis is difficult, as usually only the mean of the distribution of the absolute
turning angle, which is larger than the maximum of this distribution, is reported in litera-
ture. However, for the zooplankton copepod the observed DTA is given by ScHMITT and
SEURONT (2001), and is qualitatively and quantitatively very similar to the DTA shown
in Figure 5 B.
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Fig. 5 (A) Horizontal projection of a typical track of a Daphnia in the dark (200 moves, recorded time
tec = 60 s, frame rate 10 pictures/s). (B) Probability distribution P(lal) of the absolute turning angle lal of
Daphnia between successive moves, determined from data of 1600 moves of the tracks of eight different
Daphnia observed in darkness (cumulative recorded time 7., = 455 s, frame rate 10 pictures/s). Note that
when determining and comparing the cumulative turning angle of all left turns with the one of all right turns
as well as the number of left turns and the number of right turns, no preference in the turning behavior of
Daphnia in darkness can be found. Therefore the probability distribution P(a) of the turning angle a is a
symmetric bimodal distribution.
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3. Random Walk Model for Daphnia Circling in a Light Field

Comparing the experimental results for circling Daphnia reported in Section 2 with the
theoretical models of self-propelled agents mentioned in Section 1.1 suggests that var-
iants of the model of Self-Propelled Interacting Particles (VICSEK 2001, LEVINE at al.
2001) are not applicable to these animals, since direct interaction of Daphnia was found
not to be necessary for circling to occur. The Active Brownian Particle model of
SCHWEITZER et al. (1998) more closely simulates the observed circular motion in single
Daphnia although the variant of the model that incorporates a patchy energy supply is
not fully suitable as the resulting motion is on the wrong time scale for Daphnia: Daph-
nia can actively move a considerably longer time without energy take-up than the corre-
sponding agents in the model (DAwIDOWICZ 1999), and Daphnia slow down in a food
patch (SMITH and MACAGNO 1990) where as the agents speed up significantly when in
an energy patch.

A general question arising when comparing the self-propelled agent models which
lead to circular motion based on self-organization is which ingredients are necessary
for circular motion to occur and which are not necessary? To answer this question and
to simulate the observed behavior in single Daphnia we developed a self-propelled agent
model based on random walks with the aim of being as simple as possible. The final
model, being closely related to the model of SCHWEITZER et al. (1998), consists of two
ingredients, a short range temporal correlation to simulate the general movement of the
Daphnia in darkness and an attraction to light to reproduce the circular motion in the
light field.

3.1 Random Walk with Short Range Correlation

Discrete random walk models with interactions and memory or correlation are powerful
tools to simulate various biological, chemical and physical processes which are more
complex than pure Brownian motion (HUGHES 1995). In our case, long range interac-
tions are undesirable as we want to keep the model simple, but it is constructive to in-
corporate a short range correlation between the moves to take care of the fact that Daph-
nia do not move completely randomly but try to cover as much territory as possible
(GERRITSON and STRICKLER 1977). So instead of randomly choosing the direction of
the next step from a uniform distribution, as done in the pure random walk model, our
walker chooses its direction according to the experimentally determined distribution of
turning angle (DTA) between two successive steps of Daphnia moving in the dark (see
Fig. 5). The memory introduced into our agent by applying the DTA most likely is con-
siderable shorter than the memory of Daphnia, but following our aim to keep the model
simple the DTA provides us with a reasonable approximation. It takes care of the impor-
tant fact that due to the shape of their body and their moving devices Daphnia are biased
to move forward. Since the move length and velocity of Daphnia is relatively constant
(DopsoN 1996), the assumption of moving unit step length in unit time, which is inher-
ently incorporated in the discrete random walk model with constant velocity, is satisfy-
ing.
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3.2 Random Walk with Short Range Correlation and Attraction to Light

To simulate the behavior of Daphnia in a light field with radial symmetry an attraction
to the light proportional to the distance of the agent to the light source and proportional
to the normalized attraction strength parameter L/(1-L) is incorporated into the random
walk model described in Section 3.1. For every time step, the walker randomly chooses
a direction from the DTA, then a “kick” towards the light is added and the final head-
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Fig. 6 Characterization of the motion of a random walker with DTA and attraction strength, L, to the light,
determined from 50,000 moves for L varying from L = 0.0 to L = 0.9. (A) Probability distribution, P(«), of
the turning angle o of the walker between successive moves for L = 0.0, 0.2, 0.4, 0.6, 0.9. Note that for the
case L = 0.0 the DTA inserted in the model is visible. For circling to take place it is necessary that the posi-
tions of the maxima are smaller than £ 120°, which is true for L < 0.7. (B) Probability distribution, P(6), of
the angle 6 between the heading of the walker and the direction to the light shaft for L = 0.0, 0.2, 0.4, 0.6,
0.9. Maxima at =90°, which occur for L > 0.3, are necessary for circling to be present. (C) Probability distri-
bution, P(r), of the distance r of the walker to the light shaft for L = 0.0, 0.2, 0.4, 0.6, 0.9. (D) Average num-
ber, Ny, of successive moves circling in one direction before changing the direction for L =0.0, 0.1, 0.2,
0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.9. Best circling is observed for L = 0.4, in accordance with the observa-
tions made in (A) and (B). An average circling duration of N,,, = 8 moves for L = 0.4 combined with an
average circling radius of » = 1.6 for L = 0.4 yields that the walker is almost circling a full orbit on average
before changing the direction.
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ing is rescaled to unit length to maintain constant velocity of the walker. Simulating the
moves of the walker for varying attraction strength L € [0, 1) and characterizing the
movement with the same measures used for the Daphnia tracks in Section 2.2 reveals
that the walker circles on average around the light source in both directions for medium
attraction strength L = 0.4 and frequently changes its circling direction (see Fig. 6). For
smaller L the circular motion is less pronounced as the influence of the randomness
increases. For larger L the circling breaks down and the walker mainly steps back and
forth over the light source as the attraction to light governs the movement, and absolute
turning angles lal > 120° dominate. Without including the DTA in the model, no circu-
lar motion of the walker develops for any value of the attraction strength, the motion is
always dominated by stepping back and forth over the light source.

Comparing the experimentally observed behavior of the Daphnia and the above ran-
dom walk model with aforementioned agent models reveals that the essential ingredients
for vortex motion to occur are: (i) self-propelled agents with a preference to move for-
ward within a certain velocity range, (if) a point attraction, either directly in form of an
external parabolic potential as in the Active Brownian Particle models and the present
model or indirectly in form of an effective mean field potential resulting from the parti-
cle-particle interaction in a certain parameter range as in the model by LEVINE et al.
(2001), and (iii) alignment for symmetry breaking, either directly as in the models of
SCHWEITZER et al. (2001) and LEVINE et al. (2001) or indirectly via the water drag as
observed for vortex-swarming Daphnia.

4. Discussion and Conclusion

Although for Daphnia the interaction that leads to swarming in general and vortex-swarm-
ing in particular is not a direct one, as it is the case of birds and fish, and Daphnia swarms
do not perform complex predator avoidance maneuvers like swarm splitting and combin-
ing (HALL 1986), nevertheless, the observation of vortex-swarming Daphnia in the lab
provides the possibility to learn more about the general physical, chemical and biological
aspects of vortex-swarming in prey animals. Further experiments with Daphnia have to
include systematical investigations of the factors observed to enhance vortex-swarming
such as kairomone intensity, Daphnia density and food density. In particular the detailed
light conditions in the two different tanks as well as the light perception of the Daphnia
and the physical aspects of the fluid dynamic vortex to occur need more attention.

Apart from this, our simulation indicates that the experimentally observed bimodal
symmetric DTA for Daphnia and copepods is important for performing a circular mo-
tion, and thus might be a general feature detectable for other animals, as well. Why the
movement of these animals follows such a distribution and how animals actually choose
to turn either left or right is an unsolved question.
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Abstract

The phenomenon of behavioral stochastic resonance was discovered by RUSSELL et al. (1999) in a laborato-
ry experiment by observing the feeding behavior of the paddlefish (Polyodon spathula) in the presence of
well-controlled artificial electrical noise. The additional hypothesis of swarms of Daphnia (zooplankton)
providing a natural source of electrical noise required further measurements and analyses to evaluate the
chances that this effect plays a role in the natural environment of the paddlefish. We briefly sketch analytic
approaches to describe the noise-assisted detection mechanism of subthreshold signals using either a bista-
ble or a threshold model. The findings are spatial contour plots of the detectability in the plane spanned by
the electroreceptor on the rostrum, the prey (a single outlier Daphnia), and the center of the Daphnia swarm.
The results support the notion of behavioral stochastic resonance in the wild and thus will serve useful in the
planning of future behavioral experiments.

Zusammenfassung

Das Phidnomen der stochastischen Resonanz in der Verhaltensbiologie wurde von RUSSELL et al. (1999) in
einem Laborexperiment entdeckt, in welchem das Fref3verhalten des Loffelstors (Polyodon spathula) in der
Gegenwart von kontrolliertem elektrischem Rauschen beobachtet wurde. Die zusitzliche Hypothese von
Schwirmen von Daphnien (Zooplankton) ,.als natiirlicher Rauschquelle* erforderte weiterfithrende Messun-
gen und Analysen, um die Chancen dafiir zu bewerten, dal das Phidnomen der stochastischen Resonanz in
der Verhaltensbiologie auch unter natiirlichen Bedingungen eine Rolle spielt. Wir skizzieren analytische An-
sitze zur Beschreibung des rauschunterstiitzten Detektionsmechanismus von unterschwelligen Signalen,
welche auf einem bistabilen oder einem Schwellwertmodell basieren. Die Ergebnisse der Analysen lassen
sich durch rdumliche Detektionskonturlinien in der Ebene, die von den Elektrorezeptoren auf dem Rostrum,
der Beute (einer einzelnen, vom Schwarm isolierten Daphnia) und dem Schwarmmittelpunkt aufgespannt
wird, darstellen. Insgesamt unterstiitzen die Analysen die Vorstellung, daf} die stochastische Resonanz auch
unter natiirlichen Bedingungen eine effizientere Jagdstrategie ermoglicht. Die quantitativen Resultate wer-
den bei der Planung zukiinftiger Verhaltensexperimente hilfreich sein.

1. Introduction
Historically, the natural sciences of physics and biology have developed side by side

with physics primarily aiming at an understanding and description of inanimate phenom-
ena, e. g. celestial mechanics, electromagnetism, or the atomic structure, and with biol-
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ogy exclusively investigating objects that are endowed with the “essence of life”. Cross-
links between physics and biology were established, for instance, when the botanist Ro-
bert BROWN in 1882 observed the irregular motion of pollen grains suspended in water.
Although he had not discovered the “molecules of life”, as he first suspected, his obser-
vation still initiated an important research field of physics later termed Brownian motion.
Another example proving the cross-fertilization of both natural sciences is the topic of
neural networks (HOPFIELD 1982).

It is generally accepted that the fundamental laws of physics, derived from the obser-
vation of inanimate objects, should never be in contradiction with the dogmas of biology.
Sometimes a paradox could be resolved by careful revision of observations and concepts:
the reconciliation of all living systems with the second law of thermodynamics (by a
reformulation of the latter for open systems) is one of the most illustrious examples
(OsTwALD 1931, SCHRODINGER 1948, GLANSDORFF and PRIGOGINE 1971).

Traditional objects of physics are typically understood as a small or large collection
of only a few different elementary units. As examples consider a typical solid or a gas
that are both built from a huge number of molecules of a few species. Likewise, in gran-
ular physics a container filled with sand is successfully modeled as a huge collection of
individual grains that are completely characterized by their size and a few constants ac-
counting for their elastic and viscous properties. In contrast, biological objects are com-
plex structures, composed of a myriad of different units each possessing a rich substruc-
ture, and being involved in an intricate network of interactions. This statement can be
made regardless of a specific scale, be it the DNA, the cellular, tissue, or organ level,
be it the behavioral level of individuals or of ecological groups.

From this viewpoint it is intriguing to investigate whether a phenomenon like Sto-
chastic Resonance (SR) could have any functional benefit for the performance of a task
relevant in a biological context. If so, evolution provides an explanation how fundamen-
tal mechanisms have pervaded the different levels of self-organization of a biological
being (EBELING et al. 1990). Nevertheless, and in spite of being used to the success of
reductionism: to find an effect from inanimate world, like SR, acting on the highest bio-
logical, the behavioral level, is still absolutely remarkable.

This paper is organized as follows: in Section 2 we briefly review the essential fea-
tures of SR introducing its two paradigm models: the bistable potential and the threshold
system. The phenomenon of phase synchronization in stochastic systems and methods of
its description are introduced in Section 3 and its relation to SR is touched upon. In
Section 4 we introduce the paddlefish, the Daphnia and review in brief the behavioral
SR experiment performed in St. Louis. Section 5 is devoted to the measurements and
following analysis of the Daphnia swarm activity. Eventually, in Section 6 we outline
the steps that lead to the quantitative prediction of behavioral SR in the wild. Discus-
sions and a short summary will close this presentation.

2. A Primer on Stochastic Resonance
In everyday life, noise is considered as being detrimental to the performance of any task,
be it a telephone conversation or the perception of a movie on a flickering TV screen.

Hence, the assertion that noise or fluctuations can improve some functionality first
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comes as a surprise. In fact, the thrust of SR research comes from this counterintuitive
central statement. However, the phenomenon immediately becomes intelligible to the
layman when mentioning that SR occurs in systems, which in the absence of fluctua-
tions perform no function at all. As an illustration consider the following two paradigm
systems in Figures 1 and 2.

In Figure 1 we sketched a double well potential that is modified in time by an ex-
ternal periodic signal. The function is to detect and amplify the subthreshold signal and
shall be realized by the overdamped motion of a fictitious particle in this oscillating
potential. Subthreshold means here that the external signal amplitude is small enough
not to deform the potential in such a way that the barrier separating the two wells is
lost. The amplification mechanism requires the fictitious particle — indicated by the
little circles in Figure 1 — to make transitions across the barrier. However, in the ab-
sence of fluctuations the particle never performs any transition at all but, instead, oscil-
lates in one of the two minima. Only when tuning in noise the particle can jump across
the barrier and it does so preferentially when the barrier is lowered by the external
signal. Rate theory (HANGGI et al. 1990) teaches that high and low barrier situations
have transition rates that differ by an exponential (of the barrier asymmetry). For
rather high noise intensities it is evident that the particle will practically respond to
the large fluctuations alone and no longer feel the comparatively small variations of
the potential. Thus, it comes as no surprise that for some intermediate noise intensity
the particle can follow the external signal best.

Figure 2 contains three elements: a threshold (dashed horizontal line), a subthreshold
periodic signal and fluctuations. As before, the function of this system is to detect and
amplify the subthreshold signal. It performs this task by eliciting a spike whenever the

Fig. 1 The double well potential is driven by an oscillating external signal. The amplification mechanism
is based on transitions across the barrier separating the two minima.
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Fig. 2 The threshold system elicits a spike whenever the sum of the subthreshold sinusoidal signal and the
instantaneous fluctuation crosses the threshold (dashed horizontal line) from below. The symbol A, denotes
the gap between the signal median and the threshold. Figure adapted from FREUND et al. (2002).

sum of signal and fluctuation crosses the threshold from below. As is evident from the
sketch without noise no spike will ever occur and for high noise intensities the small gap
between signal and threshold becomes irrelevant for the generation of spikes. Again, for
some intermediate noise intensity the correlation between the input signal and the result-
ing spike pattern will be maximal.

In both systems the effect of SR is rooted in the beneficial role of fluctuations, that
cooperate with a subthreshold signal thus enabling and optimizing the functionality of a
detector/amplifier. The periodically driven bistable potential was the first model to ex-
plain the effect of SR in the context of global climate modeling (glacial periods) (BENZI
et al. 1981, NicoLis 1981). Moreover, it was the basis for a popular adiabatic binary
description (MCNAMARA and WIESENFELD 1989) that allows to easily extract analytic
expressions for spectral measures of SR (GAMMAITONI et al. 1998), pinpointing the ef-
fect quantitatively. The threshold system, on the other hand, played a prominent role
after SR was discovered in sensory neurons (LONGTIN et al. 1991, LONGTIN 1993).
Since then it was repeatedly used to illustrate what is termed non-dynamical or thresh-
old SR (Moss et al. 1994).

It has to be noticed that the phenomenon of SR is not restricted to periodic signals but
that extensions to aperiodic SR (NEIMAN and SCHIMANSKY-GEIER 1994, COLLINS et al.
1995) exist.
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The fluctuations, that occur in the setup of SR, can have a different origin:

— They can be part of the signal. In this case one would adapt the characteristics of the
nonlinear system to yield optimal functional performance.

— They can be intrinsic. From the viewpoint of physics internal noise is ubiquitous and
related to the temperature of a system. On the one hand, it is widely appreciated that
the role of internal noise in information-processing systems is generally negative. An
appropriate method to reduce such detrimental effects is to use many elements in
parallel (GAILEY et al. 1997). On the other hand, recent theoretical studies on chan-
nel noise in excitable membranes have shown that internal fluctuations can be func-
tionally important (SCHMID et al. 2001, JUNG and SHUAT 2001).

— They can be external and additive to the signal. This is the case usually considered.
The external character of noise also implies that one can control the intensity of fluc-
tuations.

Of course, a mixed situation is also possible.

It is worth mentioning that an engineer’s solution to the detection of subthreshold
signals would probably be to lower the detection threshold. In fact, it is easy to show
that adapting the threshold of a single unit to the signal median maximizes the transin-
formation (transmitted mutual information) and outperforms the situation with the origi-
nal threshold and optimal noise by far. The effect of suprathreshold stochastic resonance
(Stocks 2000) is observed when feeding the signal simultaneously into a summing en-
semble of detectors. It is based on the fact that noise effectively generates an ensemble
of distributed thresholds that can sample the input signal with a much higher resolution.
The optimal distribution of thresholds depends on the signal characteristics; when the
latter are not known a priori or when the signal is non-stationary Gaussian white noise,
indeed, proves to be the best strategy. The original claim of SR in a single element thus
retains its validity in situations where the threshold cannot be lowered arbitrarily far, and
it can be extended to the suprathreshold case when information is processed by a sum-
ming ensemble.

3. Stochastic Resonance and Noise-induced Phase Synchronization

Closely related with SR is the phenomenon of noise-induced phase synchronization
(FReEUND et al. 2000) or noise-enhanced phase coherence (NEIMAN et al. 1998). To ex-
plain the basic mechanism and its connection to SR we have to recall a few facts of
synchronization phenomena and their description.

Classically, synchronization describes the adjustment of rhythms of oscillating ob-
jects due to their weak interactions (Pikovsky et al. 2001). Whereas the bidirectional
interaction of two such self-sustained or autonomous oscillators is termed mutual syn-
chronization, the case of unidirectional interaction is interpreted as forced synchroniza-
tion by an external force and includes the standard setup of SR. In this case the two
“rhythms” or, better, the two timescales are given by the external periodic signal and
the stochastic flipping dynamics of the bistable system. The description of synchroniza-
tion is based on a suitably defined phase difference

q)n,m(t) = n(”om(t) - mgpin(t) [1]
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between the instantaneous phase of the output ¢,,(7) and the instantaneous phase of the
input ¢;,(t). The numbers n and m denote the locking mode m : n, i.e., after n periods of
the input the output has completed m cycles. In the case of a purely deterministic dy-
namics synchronization in the m: n locking mode reveals itself through the fact that the
instantaneous phase difference is bounded for all times, i.e., lg, ()] < M. For a stochas-
tic dynamics with unbounded fluctuations, as they occur in standard Gaussian noise, this
criterion has to be modified since sufficiently large fluctuations will cause phase slips
that interrupt locking episodes. A useful definition is based on the observation that
phase synchronization is realized effectively when the average duration of locking epi-
sodes (Tjock) is large in comparison with the period Ty of the periodic input (FREUND
et al. 2001 a). The quantity (7,«) is determined by both drift and diffusion of the phase
difference ¢, ,,; this connection is quantified by considering the second moment of the
phase difference

<(oi,m> = <wn,m>2 <Tlock>2 + 2Dn,m<Tlock> [2]

where (®,,,) is the average “frequency”, i.e., the generalized difference between the
mean switching rate (multiplied with 27) and the frequency of the external drive, and
D, is the diffusion coefficient of the related phase difference ¢, ,,. Vanishing (w, )
means vanishing drift, a situation called (m: n) frequency locking. From Equation [2] it
is obvious that frequency locking does not necessarily imply effective phase locking be-
cause he latter requires both drift and diffusion to be negligible. To solve for (Tj,c) we
have to specify what we understand by a phase slip: since phases are effectively 27n-per-
iodic it is reasonable (at least for n = m = 1) to define (p?,) = 7" as the condition for a
phase slip. From this we arrive at '

<Tlack> Dn.m
n = = -
< lock> TO <CUn N > 2 TO

2
M) — 1] >>1 [3]
Dn.m

which shows that the mean number of locked cycles (n,.) can be computed when
(wnm) and D,,, are known. These two quantities can be either extracted numerically
from a time series — in connection with suitable phase definitions' — or, for model sys-
tems, be derived analytically from a stochastic phase dynamics (FREUND et al. 2003). In
Figure 3 we plot the analytic result of a calculation that was based on a dichotomous
periodic input and a dichotomous output, the latter switching according to a Markovian
dynamics formulated via a master equation (FREUND et al. 2000). As can be seen for
intermediate optimal noise intensity ¢*/AU ~ 0.16 and sufficiently large signal ampli-
tude the mean number of locked cycles can increase significantly.

The fact that noise-induced phase synchronization requires significantly large signals
is in contrast to SR which also occurs for weak signals (in the linear response regime)
(GAMMAITONI et al. 1998). In this context it has to be mentioned that in the neuro-
sciences yet another definition for phase synchronization is common. The criterion is
based on the wrapped distribution® of the phase difference and states phase coherence

1 For example Hilbert phase, linear interpolating phase or discrete phase (FREUND et al. 2001 a, FREUND et
al. 2003).
2 “wrapped” means that phases outside the interval (0,27r) are mapped back using the operation (mod 27).
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Fig. 3 The average number (11, )0f locked cycles as a function of noise intensity 6*/AU (abscissa) and of
the relative signal amplitude A/AU (curve parameter). For sufficiently strong signals a pronounced
maximum around ¢?/AU = 0.16 indicates the occurrence of noise-induced phase synchronization.

spikes 2 HH

spikes 1 m |H | m ‘H ‘H

signal

Fig.4 Two spike patterns in (hypothetic) response to a subthreshold sinusoidal input signal. While both
spike patterns yield a sharply peaked wrapped phase distribution (¢, 3) only the lower row (spikes 1) exhib-
its an extended locking episode.
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in the statistical sense whenever this distribution deviates significantly from the equidis-
tribution. A glance at Figure 4 will immediately convince the reader that both spike pat-
terns yield a sharply peaked wrapped distribution of ¢5 ;. However, only one of the spike
patterns exhibits an extended locking episode (with each maximum of the sinusoidal
input being accompanied by three spikes). Moreover, it is evident that a peaked distribu-
tion is even to be expected in the region of suboptimal noise intensity, i.e., outside the
SR regime.

4. The Paddlefish, the Daphnia and the St. Louis Experiment

In 1999 David RUSSELL and colleagues from St. Louis reported the exciting results of an
experiment that established the phenomenon of behavioral SR (RUSSELL et al. 1999).
Before actually describing the experiment in brief we have to provide a few important
biological facts about the leading actors of the drama: the paddlefish and its favorite
food, the Daphnia (zooplankton).

Paddlefish, Polyodon spathula, are among the largest freshwater fishes found in the
river basins of North America and the Yangtze River in China, yet they feed exclusively
on planktonic prey. They are found most often near the bottoms of rivers and lakes where

Fig.5 (A) A juvenile paddlefish. (B) Close-up
view of electroreceptor pores on the rostrum. Fig-
ures adapted from FREUND et al. (2002).
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turbulence and muddy water obscure normal vision but where plankton is plentiful. In
order to adapt to this environment, paddlefish, primeval creatures whose fossil record
extends into the Cretaceous (65 million years ago) (GRANDE and Bemis 1991), have
evolved an elaborate array of electroreceptor organs spread over an elongated rostrum
anterior to the mouth and head (see Fig. 5 A). The organs consist of clusters of ampullae
of Lorenzini, which communicate with the water through short (0.1 mm) canals that ter-
minate in pores on the skin surface, as shown in Figure 5 B. Prey, for example Daphnia,
are detected and tracked exclusively by means of an entirely passive electric sensory
system provided by the rostral array (WILKENS et al. 1997, NEIMAN et al. 2000, NEIMAN
and RusseLL 2001). This system has evolved to detect the weak electric fields emitted
into the surrounding water by the Daphnia’s muscular activity associated with its swim-

| Feeding legs
\

B ~~ Antennae (locomotion)

Fig. 6 (A) Sketch of a Daphnia. (B) The electric signal of a tethered Daphnia contains two oscillating com-
ponents related to motion of the feeding legs and the locomotory antennae. Figures adapted from FREUND
et al. (2001 b) and FREUND et al. (2002).
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ming and feeding motions. Juvenile paddlefish (of less than 1 year old) locate, track and
feed on single plankton (WILKENS et al. 1997, NEIMAN et al. 2000), whereas older fish,
after having developed gill rakers, filter feed on swarms.

A favorite food of the paddlefish is the Daphnia, plankton of 1-2 mm length, com-
monly found in North American fresh water (see Fig. 6 A). Daphnia emit weak dipole-
shaped electric fields with both DC and oscillatory (4—15 Hz) components (see Fig. 6 B).
The intensity of the signal on the surface of the fish’s rostrum decreases approximately
as the inverse cube of the distance to the Daphnia because of the dipole-like shape of the
field. Indeed, it has recently been shown, using the 1/ drop-off characteristic of the
dipole field, that the Fisher information at the rostrum from a single Daphnia follows
the prey capture probability exhibited by the fish (GREENwoOD et al. 2000). Daphnia
that appear at larger distances from the fish are less likely to be detected and/or cap-
tured, because their signals on the rostrum are weaker owing to the 1/7° law. However,
external or environmental electrical noise can enhance the detectability of subthreshold
signals at the edge of the animal’s perception. Consequently, the probability that distant
Daphnia are captured can be enhanced by the noise in a process called behavioral SR
(RUSSELL et al. 1999).

The idea that electric noise, indeed, can enhance the detection of subthreshold signals
was actually proven in the St. Louis experiment depicted in Figure 7.

All components of a classical SR experiment are given: a stochastic resonator related
to the electroreceptors (or perhaps to some level of perception further downstream in the
brain), a subthreshold electrical signal caused by the locomotory or feeding activity of
remote Daphnia, and spatially homogenous electrical noise provided by a noise genera-
tor and a pair of electrodes. The properties, i.e., a typical time course and the spectrum
of the artificial noise, are shown in Figure 8.

Projecting the locations of all Daphnia at the moment of initial detection onto the x—y
plane (perpendicular to the rostrum axis with the rostrum tip pointing towards the origin,

1‘_e‘IJa',Oé‘m."a (prey) Paddlefish

ty
x2

Rostrum

Mouth

Electrical noise

Electrode Electrode

Fig. 7 Sketch of the swim mill that was used in the St. Louis experiment by RUSSELL et al. (1999): water
recirculating (from left to right) at the natural swimming velocity of the paddlefish allowed observation of
its responses to many passing-by Daphnia fed into the stream of water. The prey location at the instant of
the first behavioral response (e. g. motion of the pectoral fin) was read from video recordings (side view and
bottom view). A pair of electrodes provided spatially homogenous electrical noise. Figure adapted from
RuUSSELL et al. (1999).
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Fig. 8 (A) A typical time course of the artificial noise used in the St. Louis experiment; oscillations along
the ordinate typically range between 0.05-50 pV cm™ r.m. s. (B) The power spectrum of the artificial noise.
Figures adapted from RUSSELL et al. (1999).

cf. Fig. 7) yields the scatter plots shown in Figure 9. The widening of the region of de-
tectability in the presence of optimal noise is the key observation of behavioral SR
(RuUSssELL et al. 1999).

The conclusion of behavioral SR from the laboratory experiment was firmly estab-
lished by carefully ruling out alternative explanations (RUSSELL et al. 2001). But where
in the wild should the paddlefish encounter a natural source of external noise pushing the
effect of behavioral SR beyond an academic laboratory experiment towards a realistic
behavioral strategy optimized and proven by evolution? The speculative answer was al-
ready given by RUSSELL and colleagues (1999): in the natural environment of the pad-
dlefish, i.e., in rivers beneficial fluctuations of the electrical field might be provided by
swarms of Daphnia. This means the setup of the St. Louis experiment (Fig. 7) has to be
replaced by the situation shown in Figure 10.
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Fig. 9 Scatter plots of Daphnia locations at the moment of initial detection shown, (A) for the noiseless
case (control), (B) for optimal noise, and (C) for rather high noise, clearly reveal the effect of behavioral
SR: outliers that were not detected in the control experiment (A) and that evidently emit subthreshold
electrical signals can be detected in the presence of optimal noise (B). At extremely high noise intensi-
ties (C) strong fluctuations have the expected detrimental effect. Figures adapted from RUSSELL et al.
(1999).

single Daphnia
dipole P,

e Daphnia swarm

Fig. 10  Sketch of the behavioral SR setup in the wild: the pair of electrodes from the laboratory experi-
ment is replaced by the Daphnia swarm. Figure adapted from FREUND et al. (2001 b).
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5. Daphnia Swarms

The tendency of Daphnia to clump in clusters and form swarms of very high density
(1000 to 9000 individuals per liter) was reported by many authors (COLEBROOK 1960,
BrANDL and FErRNANDO 1971, Davigs 1985, Kvam and KLEIVEN 1995). Several expla-
nations for this swarm formation exist ranging from physical processes in the water col-
umn, e. g. Langmuir circulations, to main biological drivers: avoidance of predators, lo-
cation of food patches and location of mates (FoLT and BURNS 1999).

The avoidance of predators hypothesis is strongly supported by the observation that
swarming more often occurs during daylight hours than at night (JAKOBSEN and JOHNSEN
1988, Kvam and KLEIVEN 1995) when visual predators like planktivorous fish and inver-
tebrates would be most threatening. The strongest evidence for swarms induced by pre-
dation, however, is from predator kairomone studies (PANOWSKA and KOWALCZEWSKI
1997, JENSEN et al. 1998). Kairomones are chemical compounds that act as cues for the
prey and are released by fish, invertebrate predators or even crushed bodies of Daphnia.
When such kairomones are experimentally introduced into the water of Daphnia cul-
tures, swarming behavior is induced (PmaANOwSKA and KOWALCZEWSKI 1997). When
predators are present, formation of a group benefits the individual, because many identi-
cal prey individuals in random motion can distract or confuse predators and decrease
their attack rates (MILINSKI 1986). Thus, the dilution effect affords a degree of safety
to an individual within a group. The probability of an individual being attacked within
a group is lower than for a solitary individual (BERTRAM 1978). Thus, swarming in
Daphnia is likely a permanent behavioral strategy in systems where predators are abun-
dant (JENSEN et al. 1998).

The signature of the electric fields from Daphnia swarms can be measured. In Fig-
ure 11 A, we show a photograph of a swarm in an aquarium. Figure 11 B shows the time
course of the noise potential obtained at the location of the measuring electrode depicted
in (A). The probability density of the amplitude of the potential is plotted in Figure 11 C.
We note that it is well described by a Gaussian function as indicated by the solid curve.
This supports the hypothesis of incoherent activity of Daphnia within the swarm. Fig-
ure 11 D presents the measured power spectrum of the Daphnia swarm.

The power spectrum is clearly representative of band-limited noise. Consequently, we
shall approximate the swarm signal as Ornstein-Uhlenbeck (OU) doubly filtered noise
(UHLENBECK and ORNSTEIN 1930, see also JUNG 1994, DOLAN et al. 1999). This noise,
&(2) is generated by a double-pole linear filter of white noise according to

?¢ /1 1\d¢ 1 VD

dr? + <T1 + T2> dr + Tlfzé t) a 7172 r(t> 4]
where D is the noise intensity, and /(¢) is white noise with zero mean and a delta auto-
correlation function:

(1)) =0 and (I'(5) [(F)) = 20(t — ) (5]

The filtered noise, £(7), has two correlation times, T; and T, resulting in the stationary
autocorrelation function (for 1, < 1)

D |z B |l
C(r) = 7-3 [rl exp (n) T exp(rzﬂ [6]
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Fig. 11 (A) A photograph of a Daphnia swarm together with the measuring electrode (lower arrow) and
the reference electrode (upper arrow). The measuring electrode is coated with a bead of agar, an electrically
conducting substance, in order to minimize the effects from individual Daphnia colliding with the electrode
tip. (B) Electric potential recorded from the measuring electrode shown in (A). (C) Measured amplitudes are
distributed according to a Gaussian, thus, supporting the hypothesis of incoherent activity of Daphnia within
the swarm. (D) The power spectrum of the measured swarm signal (fluctuating dotted line) together with a
fit of Equation [7] (fat solid line) demonstrating that we can identify the swarm signal with doubly filtered
Ornstein-Uhlenbeck noise. Figures adapted from FREUND et al. (2002).

and the (one-sided) power spectrum is given by

See(w) = jD 2 171
(1 —11100?) +(11 + 12)" @?

where @ = 27f is the angular frequency. The two time constants are characteristic of the
dynamics of a system that would reproduce the swarm noise. The case 7, << 7, corre-
sponds to the overdamped limit of the OU process, and the correlation function reduces
to a simple single exponential and the power spectrum reduces to a Lorentzian. However,
in the following, we shall need to calculate the mean threshold crossing rate of this
noise, and this quantity must be finite. In the strictly overdamped limit, however, this is
not the case, so we must retain both correlation times (STRATONOVICH 1963, JUNG 1994).
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We note that the experimental power spectrum of the swarm, shown by the dots in
Figure. 11 D, is very well described by this doubly filtered OU noise (Equation [7] with
71 =0.13 s and 7, = 0.017 s) as shown by the solid curve.

Having specified the spectral properties of the swarm noise it remains to quantify its
intensity o’ = D/(t; + 1,) at the location of the receptor (on the rostrum). As is evident
from Figure 10 this task involves the relative positions of the swarm and the receptor
(paddlefish) and the swarm geometry (shape, diameter A, total number N of Daphnia,
spatial density p).

To solve this problem we first note that d << R, r << A where d is the size of a Daph-
nia (mm), R (r) are the distances between the detecting site and the swarm center (the
outlier Daphnia) (1-100 cm), and / the wavelength of the oscillating signal (far beyond
the km scale). Due to this the near-field limit of the electric dipole field applies, yielding

E(r,t)o<—3(n.pizn_pd:>A:% [8]
E(R.1) o /3[N(x) .P(TI;T i\|’3(x) — P(x,1) () dx (9]

where p(x) describes the density of Daphnia within the swarm. Both expressions [8] and
[9] contain the inverse cube of the distance and some dependence on the orientation of
the dipole axis with respect to the direction of n = r/r and N(x) = R(x)/R(x) (cf. Fig. 10
and 12). The signal amplitude A occurring in [8] corresponds to the maximum value of
the field component of E at the rostral surface and C; denotes a first proportionality
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Fig. 12 The geometry of the predator-prey-swarm system. Figure adapted from FREUND et al. (2001 b).
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constant. The locally varying net dipolemoment is specified as

P(x,1) = pyL(x) el =¥()] [10]

with L(x), w(x), and y(x) denoting the local orientation, frequency and phase of Daph-
nia in a compartment centered around x.

Calculation of the swarm spectrum proceeds by writing down an expression for the
correlation function of the electric dipole fields of Daphnia related to different times ¢
and 7 and different positions R and R’ within the swarm. The assumption of incoherent
Daphnia activity — supported by the Gaussian amplitude distribution (cf. Fig. 11 C) —is
used to perform the average required by the correlation function. Fourier transformation
then yields (according to the Wiener-Khinchin theorem) the power spectrum. Compari-
son with the spectrum of OU noise [7] thus provides an expression for the parameter D
controlling the intensity of swarm noise

Do<p§/|Rp(_x))c|6 & [11]

that can be further evaluated when assuming a spherical homogenous density
() N

)
R R

where N is the total number of Daphnia, A is the diameter of the spherical swarm, and
C, is a second proportionality constant.

The expressions in [8] and [12] quantify the dependences of the signal amplitude
A=Cy/r and swarm noise intensity o’ = D/(ty + 7,) on the geometry of the system.
The two proportionality constants C; and C, were fitted to experimental data (FREUND
et al. 2001 b).

[12]

6. Prediction of Behavioral SR in the Wild

In Sections 2 and 3 we have outlined the mechanisms underlying SR and noise-induced
phase synchronization. Moreover, we have pointed out that, according to our definition
(Mioer) >> 1, noise-induced phase synchronization is a stronger demand that also com-
prises the case of SR. In this section we will indicate how the quantifiers for both sub-
threshold detection mechanisms depend on the signal amplitude and the noise intensity
and, thus, on the geometry of the predator-prey-swarm system. To obtain explicit expres-
sions we have to specify model details for the threshold and the bistable system.

6.1 Behavioural SR Quantified via the Signal-to-noise Ratio
In Section 2 we introduced the threshold system that responds to every crossing of the
threshold from below by eliciting a stereotypical pulse, say a rectangle of height O and

width Jz. Now we make the additional assumptions that
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— the spike generating threshold crossing events can be described as a renewal process,
i.e., the events are uncorrelated and

— the adiabatic assumption: fy << (v) and f,, where f; is the frequency of the driving
signal (outlier Daphnia at 5-7 Hz), (v} is the mean threshold crossing rate and f;, is an
upper cut-off frequency of the swarm noise.

The mean threshold crossing rate (v), scaled for Gaussian noise with standard devia-
tion ¢ and a mean distance 4 below the threshold is given by the Rice formula (RICE
1954)

1
2

Az 00
exp (— 2—0_2> Ofsz(co) dw

2n

() = [13]

OfOS(a)) dw
0

where S(w) is the one-sided power spectrum of the noise.
The mean amplitude (V') of the pulse train is related to this rate by

(V) = 0oty [14]

where Q and Jt are the aforementioned pulse height and width, respectively.
The power spectrum of the pulse train due to noise alone is given by Campell’s the-
orem

Pyfw) = 5057 (). 15)

By virtue of the adiabatic assumption the expressions [13] and [14] for the rate and the
mean amplitude, respectively, are valid also for a slowly time varying signal
A(t) = Ao + A sin(wgt) with wg = 27xf (the angular signal frequency). Sorting terms in
the expansion of (V)(r) = (V)[4(¢)] for small signal amplitudes, i.e. A << A, (linear
response regime), allows to extract from the power spectrum of the pulse train Py(w),
now in presence of the weak signal, the coefficient of the delta function centered at the
signal frequency, i.e., P? (cwp). In this way we find the signal-to-noise ratio (SNR), de-
fined in the standard way, as

_ P(wo) _ 2an3AT (_ 4y >
SNR_Pn(aJo) = [ 3 exp 252 ) [16]

In this expression we have to insert the signal amplitude A = C,/r° and the noise intensity
o = DI(t; + 1,) (cf. Sec. ). Remaining parameters can be fitted to experimental data
(FREUND et al. 2002). We are thus able to compute the SNR [16] for any geometrical
configuration of the predator-prey-swarm system.

We illustrate the results in the following way: We place the single Daphnia at the
origin of a coordinate system and the center of the Daphnia swarm is placed along the
x-axis at (L, 0, 0). Then, at each point on the sphere r = /x% + y2 + z2, where the

rostrum of a paddlefish is located at a distance R = g (x — L)2+ y? + z* from the center
of the swarm (cf. Fig. 10), we can determine the SNR. Assuming the swarm diameter to
be A =100 cm together with reported swarm densities in the range of 1000-9000 per
liter, we estimate a maximum number for the total Daphnia population of N =5 mil-
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lion. With these numbers we finally visualize the SNR as contour plots in Figure 13. The
contours are plotted in the X—Y plane containing the single Daphnia and the center of
the swarm.

Daphnia
swarm

-0+ V7T 7T T 71T T T T 1 T

Fig. 13 X-Y contour plot of the SNR according to Equation [16]. In the region outside the dashed circle
centered at the origin the signal is subthreshold and can only be detected due to the cooperative role of elec-
tric fluctuations provided by Daphnia within the swarm to the right. Crossing values above a certain signifi-
cance level, say SNR = 0.1, should trigger an attack of the cruising juvenile paddlefish. Figure adapted from
FREUND et al. (2002).
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Fig. 14 Behavioral SR quantified
via the mean number of locked
cycles  (mox) coded by color:
black <'2<dark red to light yel-
low > 5. The blue region indicates a
segment of the swarm and the green
circle with the black spot (Daphnia)
visualizes the region where the signal
is above threshold. The outlier Daph-
nia approaching the swarm has to
dive through a “firewall” of optimal
noise set up by the swarming mates.
Figures adapted from FREUND et al.
(2001 b).
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It should be mentioned that the expression for the SNR [16] is closely related to informa-
tion theoretical measures, e. g. the Fisher information (Cover and THOMAS 1991) or the
square discriminability (STEMMLER 1996). In fact, for weak signals they are mutually
proportional to each other (FREUND et al. 2002).

6.2 Behavioural SR Quantified via the Mean Number of Locked Cycles

In Section 3 we have outlined how the phenomenon of noise-induced phase synchroniza-
tion occurs when a bistable or threshold system is driven by a subthreshold periodic sig-
nal in cooperation with optimal noise. Effective phase locking in stochastic systems
means that the average duration of locking episodes (7o) is large compared with the
period T, of the driving signal, or that the mean number of locked periods
(ioek) = (Tioek)/To >> 1. In Equation [3] we have expressed how (nj,) depends on
the drift (w,,,) and diffusion coefficient D, ,, of the phase difference. Now we specify
how the latter two quantities vary together with the noise intensity o”.

In the following we restrict ourselves to the case of m : n = 1:1. Analytic expressions
for (w;,;) and D, were derived in FREUND et al. (2000) based on a dichotomous de-
scription for both the input and output signal. At the heart of the analysis were two
noise-dependent rates a, and a, that were adapted (FREUND et al. 2001 b) from time-
modulated threshold crossing rates specified in (JUNG 1994)

1 1 A(1+A4)
— _ S " A 17
N T, exp< 20-2> exp( 52 > 7]

Lo DY (L A0=4) 8
= ——€X — X e
=0 TIT, P 252 P 2

where the threshold is denoted by b and A = A/b and 2 = g2 /b are rescaled signal am-
plitude and noise intensity, respectively. How A and o depend on the geometry we have
addressed in Section 5.

To illustrate the results in Figure 14 we use the same representation scheme as in
Section 6.1. Now color codes the mean number of locked periods (nj,«). Noise-induced
phase synchronization becomes clearly visible as the red to light yellow regions. The
“travelling” outlier Daphnia dives through a firewall that is set up by optimal electric
fluctuations from the swarm.

and

7. Discussion and Summary

As can be seen from both Figures 13 and 14, for adequate distances between swarm and
outlier Daphnia there exists an extra region of noise-induced detectability supporting the
hypothesis of behavioral SR in the wild. Even though this extra range does not appear
extremely large it might have considerably enhanced the survival chances of juvenile
paddlefish that prey on single Daphnia — evolutionary systems quite often follow non-
linear laws.
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Especially Figure 13 shows that steep gradients exist in the vicinity of the single
Daphnia. While the steepest gradient is realized by a “head-on” approach from the direc-
tion of the center of the swarm, this approach may not be optimal for a juvenile that feels
uncomfortable swimming within the swarm. Moreover, the gentler gradients that encircle
the swarm on the outside offer substantial detectability at a longer distance. These gra-
dients form a curved path toward the single Daphnia, that may indicate an optimal ap-
proach trajectory for the cruising juvenile paddlefish, a prediction that appears experi-
mentally testable.
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Oscillations in Minimal Enzyme Reaction Systems:
Origins, Dynamics, and Potential Biological Function

Marcus J. B. HAUSER (Magdeburg)
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Abstract

Experimental studies on minimal enzyme reaction systems that induce oscillatory (or rhythmic) dynamical
behavior are presented. The minimal enzyme systems consist only of a single enzyme (or enzyme model
compound) and its substrates. Two reaction systems are discussed in detail: the peroxidase-oxidase reaction
and a biomimetic cytochrome P450 model system. The peroxidase-oxidase reaction (i.e. the oxidation of
NADH by O, catalyzed by peroxidase) displays rich dynamics in vitro. Experiments in cell extracts suggest
that such oscillations may also occur in vivo. Our investigations indicate that one possible function of the os-
cillations — in addition to provide a means of information transduction — is the protection of the enzyme
against inactivation by reactive oxygen species. The second system addressed here is a biomimetic cyto-
chrome P450 model system. It consists of synthetic components which were designed to reproduce the
characteristic features of the natural counterpart. Oscillations between different oxidation states of the lipo-
philic enzyme model compound can be induced. These oscillations require a transport of electrons or sub-
strates into the lipid bilayer of a phospholipid vesicle to be effective. Thus, the experiments indicate that
nonlinear dynamics, like oscillatory or rhythmic behavior, are a feature expected to occur in a great variety
of single enzyme systems.

Zusammenfassung

Es werden experimentelle Untersuchungen von minimalen Enzymsystemen vorgestellt, die oszillierendes
(oder rhythmisches) dynamisches Verhalten hervorrufen. Die minimalen Enzymsysteme bestehen jeweils
aus einem einzigen Enzym (oder einer Enzym-Modellverbindung) und dessen Substraten. Zwei derartige
Reaktionssysteme werden im Detail vorgestellt: die Peroxidase-Oxidase-Reaktion und ein biomimetisches
Cytochrom-P450-Modellsystem. Die Peroxidase-Oxidase-Reaktion (d.h. die durch Peroxidase katalysierte
Oxidation von NADH durch O,) weist unter In-vitro-Bedingungen reichhaltige Dynamik auf. Untersuchun-
gen an Zellextrakten deuten darauf hin, daf oszillierendes dynamisches Verhalten auch unter /n-vivo-Bedin-
gungen auftreten kann. Unsere Arbeiten zeigen ferner, dafl Oszillationen — zusitzlich zu ihrer Rolle als
Informationsiibertrager — eine weitere biologische Funktion zu haben scheinen, namlich den Schutz von En-
zymen gegen irreversible Inaktivierung. Die zweite hier vorgestellte Reaktion ist ein biomimetisches Cyto-
chrom-P450-Modellsystem. Es besteht aus synthetischen Komponenten, die so konzipiert wurden, daf} sie
die charakteristischen Eigenschaften des natiirlichen Vorbilds wiedergeben. In diesem System beobachtet
man Oszillationen zwischen den verschiedenen Oxidationsstufen der lipophilen Enzym-Modellverbindung.
Damit diese Oszillationen entstehen konnen, muf3 ein Transport von Elektronen oder von Substraten in die
Lipiddoppelschicht einer Vesikel gewihrleistet sein. Die hier vorgestellten experimentellen Befunde zeigen,
daB nichtlineares dynamisches Verhalten, wie oszillierende oder rhythmische Dynamik, als eine typische
Verhaltensweise von minimalen Enzymssystemen zu erwarten ist.
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1. Introduction

The investigation of oscillatory chemical reactions has been in the focus of scientific
attention during the last decades (FIELD and BURGER 1985, EPSTEIN and PoymMAN
1998), due to the interest in studying the dynamics by their own right, and due to the
fact that chemical oscillators are considered to be simple model systems for biological
rhythms. While chemical oscillators and rhythmic biological systems display the same
types of nonlinear dynamical behavior, generally there is a considerable difference in
the degree of complexity of the systems under consideration.

Oscillatory chemical reactions involve a relatively small number of chemical species
undergoing a set of reactions; the entities giving rise to nonlinear behavior are on the
molecular level. By contrast, rhythmic biological systems may frequently be found at
the cellular level (e.g. in the concentrations of cytosolic Ca** in oocytes of Xenopus
laevis; CAMACHO and LECHLEITER 1993) and the secretion of insulin from pancreatic
f-cells (GOODNER et al. 1977), at the level of tissues or even organs (e. g. the oscilla-
tions in CAM plants; LUTTGE 2000, RASCHER et al. 2001). The mechanisms that give
rise to rhythmic phenomena in biological systems are generally rather complex, involv-
ing a large number of species and agents, which may encompass molecules, but also
more complex entities, such as receptors, ion channels, or compartmented systems. The
high degree of complexity allows for a high specificity and for a precise fine tuning of
the physiological processes. However, such high complexity may often make it difficult
to obtain fundamental understanding of the underlying mechanisms which give rise to
the nonlinear behavior.

Thus, we face the situation where the dynamics of highly complex biological pro-
cesses that occur at higher hierarchical levels of organization (such as cells, tissues, or
organs) are thought to be modeled by comparatively simple chemical oscillators whose
constituents are exclusively at the molecular level. Nevertheless, there is ample corre-
spondence in the types of dynamics displayed by both classes of systems. However, the
question remains, whether oscillatory or rhythmic behavior may also be generated by
biological or biochemical systems at the molecular level of organization. To this pur-
pose, we study the nonlinear dynamics of single enzyme systems. The systems pre-
sented in this article consist only of a single enzyme and of its substrates. Therefore,
they can be considered as the minimal biochemical systems that generate rhythmic (or
oscillatory) behavior. Furthermore, these systems are formed of molecules, thus closing
the gap in hierarchical organization levels found in rhythmic biological systems on the
one hand, and in simple, “molecular” chemical oscillators on the other hand.

Despite numerous calculations using either the Michaelis-Menten formalism or even
more explicit kinetic schemes that show that oscillatory behavior should be a frequently
observable feature of single enzyme reaction systems (e. g. RYDE-PETTERSON 1989, HUB-
NER and WOLNA 1994), only a scant number of such systems have unambiguously shown
to display rhythmic behavior in experiments. Often, only very few or even a single oscil-
latory cycle is shown in the publications; in addition, it is frequently impossible to deter-
mine whether the time trace really shows an autonomous oscillatory event or if it is due
to fluctuations. Among the few unambiguous examples we find oscillations in the cleav-
age of urea by urease (TEMMINCK GROLL 1917), the oxidation of ascorbic acid by cata-
lase (DavisoN et al. 1986), and the peroxidase-oxidase (PO) reaction (for reviews see
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LARTER et al. 1993, SCHEELINE et al. 1997, HAUSER and OLSEN 1999). Recently, we
have added two further model reaction systems to this class, namely a biomimetic cyto-
chrome P450 model system (SCHENNING et al. 1995) and a pH oscillator based on hemin
(HAUSER et al. 2001 b, 2002).

In the present article we will focus on two single enzyme systems, namely the peroxi-
dase-oxidase (PO) reaction and a cytochrome P450 model system. First, we will give a
brief overview over the dynamical behavior of the peroxidase-oxidase reaction, as ob-
served from experiments where purified enzyme is used. We address the question,
whether oscillatory dynamics may occur under in-vivo conditions, before we discuss
which potential biological functions may be associated with the oscillations in the PO
reaction. Next, we will present a completely synthetic model for the cytochrome P450
system which also shows rhythmic behavior. In this biomimetic reaction system trans-
port plays an important role.

2. Materials and Methods
2.1 Experiments with the Peroxidase-Oxidase Reaction

2.1.1 Experiments with Purified Peroxidase

Measurements of the dynamics of the peroxidase-oxidase reaction were performed at
28.0+0.1°C in a 21.7 mmXx21.7 mmXx42 mm quartz cuvette placed in a Zeiss S10
diode array spectrophotometer. The reactor is equipped with a Clark-type oxygen-sensi-
tive electrode which allows simultaneous detection of the oxygen concentration in the
cuvette. Experiments were run in a 10 ml stirred sample, containing 10 ml of a buffer
(0.1 M Na-acetate buffer for experiments at 5.1 < pH < 5.9 or a 0.1 M Na-phosphate
buffer for 6.1 <pH <6.3), 1.3-1.6 uM of peroxidase from horseradish (Boehringer
Mannheim), 50-100 nM methylene blue (Merck), and a phenolic compound at different
concentrations (usually in the range of 25-400 uM). A 0.1 M solution of NADH (Boeh-
ringer Mannheim) was infused at a flow rate of 19-40 pl h™' through a capillary tube
from a 250 pl Hamilton syringe mounted in a highly accurate syringe pump (Harvard
Apparatus, model 22). The gas stream containing a 1.05% (v/v) O,/N, mixture was
purged in the gas volume (10 ml) above the reaction solution. The transfer rate of oxy-
gen vo, into the liquid is given by

vo, = K ([0z]eq — [02]) (1]

where [O,]cq = 12 uM is the oxygen concentration in the liquid at equilibrium and K is
the oxygen transfer constant. In our experimental set-up K = (6.0 £0.2)x107s™" at a
stirring frequency of 17.5 Hz. The spectrophotometric data as well as the recordings of
the oxygen electrode were sampled every 2 seconds and stored on a computer for later
analysis. The concentrations of NADH and the enzyme species ferric peroxidase (native
state), ferroperoxidase, and compound III were measured at 360, 403, 439, and 418 nm,
respectively. The concentration of these species was obtained by solving the set equation

A=degxc [2]
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where A is a vector containing the absorbancies at the 4 wavelengths mentioned above, d
is the length of the optical path through the cuvette, ¢ the vector of concentrations of
NADH and the enzyme species under consideration, and g is a 4 x4 matrix containing
the molar absorption coefficients of these four species as determined by HAUSER et al.
(2000).

2.1.2 Preparation of Cell Extracts from Horseradish Roots

Extracts of roots from wild growing horseradish plants were prepared using a modified
procedure of the one described by ELSTNER and HEUPEL (1976): 30—65 g of horseradish
root were sliced and homogenized in ice-cold distilled water (3 ml H,O per g tissue)
using a rod-blender. The homogenate was filtered through cheese-cloth and centrifuged
at 1000 g for 20 min at 8 °C in a Sorvall RC 5C centrifuge. The pellet was resuspended
in 100 ml ice-cold distilled water and recentrifuged. Resuspension and recentrifugation
were repeated twice, and the final pellet was resuspended in ice-cold distilled water cor-
responding to 7 ml of H,O per 30 g of horseradish root. The extract was used directly
without further treatment or stored at —20 °C for later use.

2.1.3 Detection in Experiments with Horseradish Root Extracts

Experiments with horseradish root extracts were performed in the setup mounted in the
photometer. The undiluted extract was placed into the cuvette. Methylene blue was
added to a final concentration of 200 nM and NADH was supplied from a syringe,
similarly to the experiments conducted with purified enzyme. Due to the turbidity of
the cell extracts, however, only the oxygen concentration in the extract could be mon-
itored.

2.2 Experimental Conditions for the Biomimetic Cytochrome P450 Model System

Manganese(III) tetrakis(dichlorophenyl)porphyrin 1 was either synthesized according to
VAN ESscH et al. (1995) or purchased from Porphyrin Systems. The manganese porphyr-
in 1 and the amphiphilic Rh complex 2 were incorporated into zwitterionic L-o-dipla-
mitoylphosphatidylcholine (DPPC) by dissolution in ethanol, and subsequent removal
of the solvent under N,. The resulting films were suspended in ethanol and injected
into an aqueous 4-ethylmorpholine/sodium formate buffer (pH 7.0), thus forming
vesicles.

The dynamic behavior of the biomimetic cytochrome P450 model system was in-
vestigated in a cuvette that was placed in the thermostating block of a Hewlett Pack-
ard HP 8542 diode array spectrophotometer. This semi-batch reactor was also
equipped with an oxygen-sensitive Clark electrode, and its head volume was supplied
with a O,/N, gas stream. The experiments were performed at 48 °C under very gentle
stirring.
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3. Studies on the Peroxidase — Oxidase Reaction

Peroxidases are ubiquitous enzymes which catalyze the oxidation of a large variety of
substrates by H,O,. However, the enzyme is also able to use molecular oxygen, O,, as
the oxidizing agent, thus acting as an oxidase. When using oxygen as substrate, per-
oxidase may oxidize electron donors such as reduced nicotinamide adenine dinucleo-
tide (NADH), indole-3-acetic acid, triose reductone, and veratryl alcohol. In the pre-
sent paper, we shall refer to the peroxidase-catalyzed oxidation of NADH by oxygen
as the peroxidase-oxidase (PO) reaction. Although the stoichiometry of the overall
reaction is

2NADH +2H* + O, — 2NAD™" + 2 H,0, [3]

many elementary steps have been found to be involved in this enzymatic catalysis.

The peroxidase-oxidase reaction has been intensively studied during the last decades.
Most frequently, enzyme from horseradish roots is used in experiments, although en-
zyme from other sources, like soybean, fungi, and milk (KUMMER et al. 1996), have also
been shown to support rich dynamic behavior. Since about 80 % of the peroxidase found
in horseradish root cells is cytosolic (L1u and LAMPORT 1974), the bulk of experimental
studies on the nonlinear dynamic behavior of the PO system has been conducted in spa-
tially uniform systems. The focus of scientific interest has been put on the elucidation of
the dynamics of this reaction under in-vitro conditions and on its reaction mechanism.
These aspects have been recently reviewed (for the dynamics see HAUSER and OLSEN
1999, for the mechanism SCHEELINE et al. 1997), we will, therefore, address these is-
sues only briefly.

3.1 Dynamic Behavior

Oscillations in the PO reaction were first observed by YAMAZAKI and colleagues in 1965,
when a N,/O, gas mixture was bubbled through an aqueous solution containing purified
peroxidase from horseradish and NADH (YamazAki et al. 1965). The occurrence of
autonomous oscillatory behavior has since been confirmed by many research groups.
Meanwhile, the PO system has developed into a prototypical reaction system for the in-
vestigation of the various types of oscillatory dynamics (Fig. 1) found in chemical and
biochemical reaction systems. Apart from sustained periodic oscillations, the PO system
was found to show complex periodic oscillations, i.e. oscillations of higher periodicity.
In addition to such periodic oscillations, the PO system also displays chaotic dynamics.
In fact, the PO reaction was the first reaction system where chaotic dynamics have been
ever observed in chemical or biochemical reaction systems (OLSEN and DEGN 1977).
Later, different routes to chaos have been detected (GEEST et al. 1992, HAUSER and OL-
SEN 1996), thus providing additional support for the occurrence of deterministic chaos in
the PO reaction. Figure 1 shows the so-called period-adding route to chaos. The evidence
of chaos has further been substantiated by the application of different tools of time series
analysis to the experimental data (HAUCK and SCHNEIDER 1994). As an example, the
time-series analysis of a (homoclinic) chaotic time-series obtained in a period-adding
sequence is depicted in Figure 2.
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Fig. 1 Examples of different types of oscillatory dynamics observed in the peroxidase-oxidase (PO) reac-
tion. The figure shows a sequence of oscillatory states as response to increasing NADH concentration levels:
(A) periodic oscillations at [NADH],, = 105 pM; (B) mixed mode oscillations composed of one large-ampli-
tude oscillation and one small-amplitude oscillation at [NADH],, = 113 uM; (C) mixed mode oscillations
composed of one large-amplitude oscillation and two small-amplitude oscillations at [NADH],, = 118 pM;
(D) chaotic time series at [NADH],, = 125 uM; and (E) small-amplitude oscillations at [NADH],, =
128 puM. This sequence is called a period-adding sequence to chaos.
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Fig. 2 Example of a time-series analysis of a chaotic time-series observed in a period-adding sequence:
(A) time-series, monitored as the absorbance of compound III at 418 nm; (B) next-amplitude map where the
maximum of the amplitude of the (n + 1)-th oscillation is plotted against the maximum of the n-th oscilla-
tion; (C) the attractor reconstructed from the time-series by a time-delay method; and (D) the one-dimen-
sional map obtained from a Poincaré section which intersects the inflowing branch of the attractor perpendi-
cular to the direction of flow. The location of the Poincaré section is indicated by the dashed line in the
time-series (A). The one-dimensional map (D) is multi-branched, indicating that the chaotic state is asso-
ciated with a homoclinic orbit. (For details see HAUSER and OLSEN 1996, HAUSER et al. 1997.)

Another interesting type of behavior encountered in the PO reaction are quasiperiodic
oscillations (SAMPLES et al. 1992, HAuCK and SCHNEIDER 1993). In this case, the dy-
namics are governed by two oscillatory frequencies, the ratio of which is irrational. The
resulting time-series consist of a series of sustained oscillations, the amplitude of which
presents a regular modulation.

The nonlinearities in the dynamics may also lead to coexistence of dynamical behav-
iors at a given set of reaction conditions. This phenomenon is called bistability (or mul-
tistability, if more than two dynamic states are simultaneously stable). Which of the
stable states is actually realized in an experimental system depends on the “history” of
the system, i.e., on the way the reaction conditions in the multistable region are ap-
proached. Transitions between such simultaneously stable states can be induced. For
the PO reaction two parameter regions have been found where bistability occurs. One
of them is characterized by the coexistence of two different non-oscillatory, stationary
states (DEGN 1968), while the other encompasses the coexistence of a stationary state
and an oscillatory state (AGUDA et al. 1990).
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3.2 Reaction Mechanism

In their study of the reaction mechanism of the oxidase function of peroxidase enzymes,
YAMAZAKI and coworkers ascertained that no less than five different enzyme intermedi-
ates were involved in the oxidase cycle (YOKOTA and YAMAZAKI 1965, YAMAZAKI and
Yokota 1973). The enzyme intermediates represent different oxidation states of the en-
zyme, where the formal oxidation state of central iron in the heme group may be
either + 2 (Per2+, ferrous peroxidase), + 3 (Per3+, ferric peroxidase, i.e. the native
enzyme), + 4 (Per**, compound II), + 5 (Per’*, compound I), or even + 6 (Per®*, com-
pound III). The group of YAmazAKI worked out the mechanistical fundamentals of the
oxidase action of the enzyme (YAMAZAKI and YOKOTA 1973, YOKOTA and YAMAZAKI
1977) which, interestingly, include the elementary reactions forming the typical peroxi-
dase cycle as a subset.

The first detailed reaction models capable of showing periodic oscillations (FED’KINA
et al. 1984, AGUDA and LARTER 1991) were based on key steps proposed by YAMAZAKI’'S
group (YOKOTA and YAMAZAKI 1977). Mechanistic studies have lead to a series of re-
fined detailed mechanistic models, which were recently reviewed by SCHEELINE et al.
(1997). Among these refined mechanistic models, the reaction model proposed by BRON-
NIKOVA et al. (1995) has the virtue of accurately reproducing the dynamical behavior so
far observed in the PO reaction and achieving almost quantitative agreement between
simulations and experiments. The reactive pathway described by this mechanistic model
is shown in Figure 3 and the underlying reactions are compiled in Table 1.

The different detailed reaction mechanisms share common characteristic features. On
the one hand, the reaction mechanisms are autocatalytic in NADe radicals: One NADe
radical reacts with compound III (Per®) (reaction 8, Tab. 1) to reduce it to the native
form of the enzyme (Per**) (via the sequence of reactions 8, 3, and 4, Tab. 1). During
this reduction, two NADe molecules are produced (reactions 3 and 4 of Tab. 1). Thus
NADe radicals catalyze their own production. On the other hand, there are two reactions
that limit the increase in NADe concentration: first, oxygen consumes NADe radicals
(reaction 5, Tab. 1), second, NADe radicals form dimers (reaction 9, Tab. 1). These two
reactions provide a “feed-back” by limiting the unbound production of NADe. The inter-
play of autocatalysis and feed-back leads to nonlinearities in the ordinary differential
equations describing the kinetics of the PO reaction. Thus, the origin of the nonlinear
behavior of the peroxidase-oxidase system stems form the kinetics of their constituent
reactions.

Despite of their relative complexity, the detailed reaction mechanisms usually only
consider the reactions of the enzyme species and their substrates (O, and NADH). The
mechanistic contributions of the two enzymatic cofactors are usually neglected since
they are only present in very low concentrations, and they are not necessarily required
for the PO reaction to show complex dynamics. However, besides moderating the reac-
tivity of the enzyme, the cofactor methylene blue has been found to protect the enzyme
from inactivation (HAUSER et al. 2000). The second cofactor is a phenolic compound (or
an aromatic amine), 2,4-dichlorophenol being most frequently used in studies of the os-
cillatory dynamics. Its effect is to tune the activity of the enzyme.

In parallel to detailed reaction mechanisms which attempt to account for the mecha-
nistic contribution of “all” involved species, a few reduced mechanistic models (i. e. sys-
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tems of differential equations) have been developed. These mechanisms were designed
to model the dynamic features of the PO reaction system, however, a direct correspon-
dence between the variables of these models and experimentally accessible parameters is
not always given. The two typical reduced schemes consist of an autocatalytic step and a
chain branching step, the kinetics of which, depending on the model, are either quadratic
(DEGN et al. 1979) or cubic (OLSEN 1983). The chain branching acts as feed-back step.
Thus, the reduced and the detailed models have the same characteristic features: an auto-
catalysis and feed-back steps. However, a network analysis showed that the structure of
the networks in the reduced models differs from those found to form the cores of the
detailed models, which in turn are in better agreement with experimental observations
(HunG and Ross 1995).

Fig. 3 The model of the PO reaction according to BRONNIKOVA et al. (1995) is shown in solid lines (the re-
actions are compiled in Tab. 1). The dashed lines indicate the electron mediating loop involving the phenolic
cofactor (PhOH), after HAUSER and OLSEN (1998). The reaction involves the following enzyme intermedi-
ates: ferrous peroxidase (Per2+), ferric (native) peroxidase (Per3+), compound I (Per5+), compound II (Per4+)
and compound III (Per®"), as well as superoxide radicals (O,"), hydrogen peroxide, the NADe radical, and
NAD-dimers ((NAD),). Doubly-barbed arrows indicate that two molecules of a species are consumed dur-
ing a reaction. The influxes of NADH and O, are indicated by single arrows pointing at NADH and a double
arrow at O,.
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Tab. 1 Detailed reaction mechanism for the peroxidase-oxidase reaction (according to BRONNIKOVA et al.

1995)

Reaction Rate constant
(1] NADH + O, + H" = NAD" + H,0, k;=3.0M s
2] H,0, + Per’* — Per™* k,=1.8x10" Mg}
[3] Per’™ + NADH — Per** + NADe ky=4.0x10* Mg
(4] Per’* + NADH — Per’* + NADe ky=2.6x10*M"s!
[5] NADe + 0, = NAD" + 05~ ks=2.0x10" Mtg!
[6] 0, + Per™* — Per®* ke=1.7x10" Mg
(7] 20, +2H" 5 H,0, + O, k;=2.0x10" M !
[8] Per®" + NADe — Per’* + NAD* kg=1.1x103M g}
[9] 2NADe — (NAD), ko=5.6x10" Mg

[10] Per’™ + NADe — Per’* + NAD* Kip=1.8x10° M 7!

[11] Per”* + O, — colll ki =1.0x10° M s7!

[12] (NADH),— NADH K1, = variable

[13] Os(gas) = Ongiquicy ky=6.0x107 s

[14] OZ(quuid) - OZ(gas) k, =6.0x 1073 57l

Reaction [12] describes the supply of NADH from its stock solution, (NADH),. To identify the other reac-
tion species, consult the legend of Figure 3.

3.3 Experiments with Horseradish Root Extracts

The dynamics of the PO reaction was also studied in cell-free extracts from horseradish
roots (M@LLER et al. 1998). In such extracts, many enzymes are simultaneously active.
In our case, several different oxidases may be competing for NAD(P)H and reactive
oxygen species, such as H,O, or O, . Thus, an unambiguous assignment of which en-
zyme is active is generally not possible. Furthermore, it is not self-evident that the os-
cillatory dynamics known from in vitro experiments should be observable in cell-free
extracts.

Figure 4 A shows the dynamics in an experiment that starts with a cell extract sus-
pension under anaerobic conditions. At time ¢ ~ 9150 s the composition of the gas phase
is changed from pure N, to an O,/N, mixture containing 1.05% (v/v) O,. One observes
a rapid but smooth transition from an oxygen-free stationary state to a stationary state
containing about 0.8 UM O,. In an analogous experiment we added small amounts of
the cofactors 2,4-dichlorophenol and methylene blue to the cell extract. The rationale
for these additions is the following: Natural phenolic compounds present in the cells
tend to possess a hydrophobic or partly hydrophobic character, so that a substantial
fraction is found in the membranes which we eliminated by preparing cell extract sus-
pensions. Thus, the 2,4-dichlorophenol is added to compensate for any loss of aromatic,
more lipophilic cofactors, while methylene blue compensates for the depletion of mem-
brane bound quinoid species, like FMN and FAD or derivates thereof. The dynamic
behavior of horseradish cell extracts responds dramatically to the addition of cofactors:
When the composition of the gas phase is switched from pure N, to 1.05:98.95% (v/v)
0,/N,, a pronounced activation peak is observed, before the new (“oxygen rich”) sta-
tionary state of the cell extract suspension is approached via strongly damped oscilla-
tions (Fig. 4 B).
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It is remarkable that damped oscillations were only observed in horseradish root extracts
prepared from roots harvested in late autumn, and that oscillations were absent in root
extracts from plants collected in winter (M@LLER et al. 1998). The seasonal occurrence
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Fig. 4 Dynamic behavior of extracts of horseradish roots: (A) Steady state behavior, as seen in the plain ex-
tract, i. e., in the absence of any additional phenolic cofactor. (B) An activation peak and subsequent relaxa-
tion to the new stationary state (via strongly damped oscillatory dynamics) are obtained upon addition of
25 puM 2,4-dichlorophenol. Experimental conditions: (A) Initially the gas phase above the extract is pure N,
and 0.1 M NADH is supplied at a rate of 21 uM h™'. At 7~ 9150 s the composition of the gas phase is chan-
ged to 1.05:98.95 (v/v) O, :N,. After a further 300 s the oxygen in the gas phase is switched back to 0 %.
(B) Initial conditions as in (A); at  ~ 4450 s the oxygen content of the gas phase is changed from 0% to
1.68 % (v/v). After a further 750 s the gas phase is reset to pure No.
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of oscillations is most probably due to seasonal variations in the expression of the en-
zyme in horseradish roots. Since peroxidases are believed to be involved in lignin synth-
esis by providing the H,O, required for the polymerization of phenolic compounds, like
coniferyl alcohol, to form lignin (Gross et al. 1977, HALLIWELL 1978), the enzyme must
be present in higher concentrations in late autumn.

The occurrence of a pronounced activation peak as well as the extremely damped
oscillatory approach to the oxygen-rich steady state (Fig.4 B) suggest that a set of
experimental conditions may exist, for which sustained oscillations might be ob-
tained. Our results do not provide a definitive proof of the occurrence of PO oscilla-
tions, however, they lend support that such behavior is potentially possible in living
systems.

3.4 Potential Biological Functions of the Oscillations

The classical biological function ascribed to oscillatory dynamics in biochemical sys-
tems is to carry information, like in signal transduction cascades or in oscillations and
waves of calcium. We would like to point out an additional possible task of oscillatory
dynamics, namely that of protecting the enzyme against inactivation by toxic reaction
intermediates.

To this purpose, experimental studies were performed in the parameter region of the
PO reaction where periodic oscillations and a stationary state coexist and are simulta-
neously stable. Which of these dynamic states is approached depends on the “history”
of the reaction system. Interestingly, in this bistable regime, the average rates of oxida-
tion of NADH (i. e. the conversion of substrate) have been shown to be the same, inde-
pendent of the type of dynamics (HAUSER et al. 2001 a). In the experiments, the reaction
was run in the absence of the cofactor methylene blue which is known to have a protec-
tive role for the enzyme. Spectral deconvolution of the spectrophotometric data of ex-
periments shows that the enzyme is almost exclusively present as ferric peroxidase
(Per3+), compound IIT (Per6+), and ferrous peroxidase (Per2+), while neither compound I
(Per’*) nor compound I1 (Per*") are present in measurable amounts. Thus, the sum of the
concentrations of Per®*, Per’* and Per®" is an excellent approximation to the total en-
zyme concentration at time 7.

Experiments performed in the bistable regime show that the rate of enzyme inactiva-
tion depends strongly on the type of dynamics, i.e., whether the reaction is in the oscil-
latory or in the stationary state. Figure 5, which compares the temporal behavior of the
sum (Per”* + Per’* + Per®) in the oscillatory and in the non-oscillatory case, illustrates
this fact. In both cases the total concentration of enzyme decreases with time due to
irreversible side reactions of the enzyme with highly reactive species. However, the
rates of enzyme inactivation are very different: While after 12000 s only about 5% of
the enzyme is inactivated when the reaction proceeds in an oscillatory fashion, roughly
45 % of the enzyme is irreversibly inactivated when the system follows a non-oscillatory
pathway (Fig. 5).

The irreversible inactivation of enzymic species is ascribed to reactions of enzyme
intermediates with reactive oxygen species. In the PO reaction, the latter may be either
superoxide radicals (O, ), hydrogen peroxide (H,0,), or hydroxyl radicals (OHe). To

140 Nova Acta Leopoldina NF 88, Nr. 332, S. 129-149



Oscillations in Minimal Enzyme Reaction Systems

14
S 12
“_:'L -
3 10
5
g
N
& 08
=z
+
o)
o} :
o 06 non-oscillatory

oscillatory
04
0 3000 6000 9000 12000
Time (s)

Fig.5 Total enzyme concentration obtained for oscillatory and non-oscillatory dynamic states in the
bistable domain. The sum of the concentrations of ferric peroxidase (Per’*), ferrous peroxidase (Per?*), and
compound IIT (Per®") of experimental time series are plotted against time. Triangles designate an oscillatory
time-series, while circles stand for a non-oscillatory dynamics.

model the effect of enzyme inactivation, we performed numerical simulations using the
reaction mechanism shown in Table 1. To account for the inactivation of the enzyme by
reactive oxygen species, we introduce the reaction

0, + Per®™ 5 E/ [4]

where E’ stands for the inactivated enzyme. Superoxide radicals need not to be the reac-
tive oxygen species in reality; however, for our simulations the choice of the reactive
oxygen species (O, , H,O, or OHe) is not critical. We obtain essentially the same result
if we assume that the inactivation is due to reactions of any of the enzyme species with
02_ or H202.

Numerical simulations reproduce the experimental observations, i.e., a modest inac-
tivation of the enzyme under oscillatory conditions and a pronounced inactivation when
the reaction is run in a non-oscillatory fashion. To understand this difference in the rate
of enzyme inactivation on the type of dynamic behavior, we computed the concentrations
of O, radicals formed under oscillatory and non-oscillatory conditions (Fig. 6). The
simulations reveal that although the maximum O,  concentration during oscillations is
much higher than the values obtained in the corresponding stationary state, the average
concentrations of O, are considerably lower (up to 8 times) during oscillations than
during a steady state reaction. Thus, the higher rate of enzyme inactivation observed
under stationary dynamics — compared to the oscillations — is linked to the higher con-
centration level of toxic and reactive oxygen species. These reactive species, which in-
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Fig. 6 Concentrations of superoxide radical under steady state and oscillatory conditions obtained from
simulations using the reaction model proposed by BRONNIKOVA et al. (1995) (Tab. 1) and the decay reac-
tion O, + Per® — E'. The steady state concentration (circles), as well as the maximum (open triangles)
and the average concentration (solid triangles) of superoxide are plotted against the rate of NADH
inflow.

evitably occur in the PO reaction, lead to irreversible inactivation of the enzyme, thus
withdrawing it from the reaction system.

To conclude, the experiments and the numerical simulations strongly suggest that
oscillatory dynamics in the PO reaction may be a strategy to protect the enzyme against
irreversible inactivation by reactive intermediates. In addition, oscillations also act as
information carriers, as can be seen from the high maximum concentrations of O, dur-
ing oscillations (Fig. 6). During the oscillations, the maxima in O, concentration are
very high (they exceed by far the concentrations found in the corresponding stationary
state), however their duration is very short. Thus, a compromise between the two impor-
tant functions of signal transduction and of enzyme protection seems to be achieved
when the reaction is performed under oscillatory conditions.

4. Biomimetic Cytochrome P450 Model System

In this section we report on the dynamic behavior of a synthetic, supramolecular reaction
system which has specially been designed to reproduce the reactivity, the kinetics, and
the most prominent structural features encountered in the natural cytochrome P450 sys-
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Fig. 7 Schematic representation of the biomimetic cytochrome P450 model system. The vesicles are made
of DPPC. The lipid domain of the bilayer hosts the model enzyme compound (the manganese porphyrin 1).
While the model compound for the NADPH-cytochrome P450 reductase (Rh complex 2) is anchored in the
bilayer, its head group is located in the aqueous phase. The sequence of redox cycles forming the reaction
cycle of the enzyme model system are shown.

tem (SCHENNING et al. 1994, 1995, vaN EscH et al. 1995). This biomimetic system con-
sists of a manganese porphyrin (1) which is incorporated into the lipid region of a phos-
pholipid bilayer (Fig. 7). The latter is formed of the zwitterionic phospholipid dipalmi-
toylphosphatidyl choline (DPPC) which hosts an amphiphilic thodium complex (2) in a
concentration ratio [DPPC]:[2]=500:1. Due to electric repulsion the charged sub-
strates (formate and NADPH) are not capable of penetrating into the hydrophobic do-
main of the phospholipid bilayer. The aqueous phase contains the substrates sodium for-
mate (or NADPH) and oxygen. In the biomimetic system the porphyrin 1 and the
rhodium complex 2 mimic the enzyme cytochrome P450, and the NADPH-cytochrome
P450-reductase, respectively.

In the model reaction the substrate formate (or NADPH) transfers electrons to the Rh
complex 2. This reduction induces a change in the charge and the polarity of the head

Nova Acta Leopoldina NF 88, Nr. 332, S. 129-149 143



Marcus J. B. Hauser

group of complex 2, and consequently leads to a conformational change in this molecule.
In the reduced form of complex 2, the Rh moiety is supposed to be neutral and apolar,
thus being able to penetrate into the lipid domain of the membrane. There, it transfers the
electrons to the manganese porphyrin 1, which is reduced to its Mn(II) form. By reduc-
ing 1, the Rh complex 2 is re-oxidized and it returns to the aqueous phase. The reduced
state of the manganese porphyrin 1 may react with oxygen. A sketch of the reactivity of
this enzyme model system is included in Figure 7.

Alkenes present in the lipid domain of the bilayer are epoxidized by the supramolec-
ular reaction system, a reaction that is typical for cytochrome P450. In addition, the turn-
over numbers for the epoxidations are in the same order of magnitude as those reported
for the natural counterpart (SCHENNING et al. 1994). Thus, the supramolecular reaction
system can be considered as a good biomimetic model for the natural cytochrome P450
system.

Preliminary studies reveal that the dynamics of the artificial cytochrome P450 model
system may show oscillatory kinetics (SCHENNING et al. 1995): at very low concentra-
tions of oxygen, the oxidation state of the membrane-bound model enzyme 1 oscillates
periodically between its manganese(Il)porphyrin and its manganese(III)porphyrin states.
Figure 8 shows the oscillations of the manganese(II)prophyrin-form of the enzyme mod-
el compound; the oscillations of the oxidized form are phase shifted by 180°.

It is worth noting that oscillatory dynamics has not yet been directly observed in re-
actions of the natural cytochrome P450 system. However, when the natural cytochrome
P450 system is perturbed by a single light pulse, the reaction products were found to be
formed periodically and to accumulate in a step-wise fashion (HABERLE et al. 1990, Gru-
LER and MULLER-ENOCH 1991). These results are consistent with oscillatory dynamics,
and may indicate that oscillations also occur in reactions of natural cytochrome P450.
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Fig. 8 Temporal oscillations of the oxidation states of the enzyme model compound 1. The absorbance at
435 nm monitors the concentration of the manganese(Il)porphyrin. The oscillations of the manga-
nese(IlI)porphyrin are complementary to those shown.
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However, a confirmation of oscillations in the natural cytochrome P450 system still
needs experimental verification.

The involvement of the Rh complex 2 is crucial for the artificial cytochrome P450
system; in its absence no reduction of the manganese(Ill)porphyrin 1 is observed (VAN
EscH et al. 1995). Complex 2 provides the electron transport from the aqueous phase
to the lipid domain of the bilayer. This transport is most likely performed through
conformational changes of 2, however, the exact nature of the mechanism of this elec-
tron transport remains to be investigated in detail. Nevertheless, any attempt to model
the reaction dynamics must account for the interfacial transport and for the reactions
taking place in the different compartments of the biomimetic system. Thus, the source
for nonlinearities in the biomimetic cytochrome P450 model system, which lead to the
oscillatory dynamics, may stem either from the chemical kinetics of the reaction sys-
tem, or from the type of the transport, or even from a combination thereof. The iden-
tification of the origins of the nonlinearities is an open issue which calls for consider-
able research efforts. It is quite probable that the reaction—transport equation that
eventually describes the dynamics of the biomimetic system may involve a type of
transport which so far has not been considered in any study of temporal and spatiotem-
poral pattern formation (i.e. a type of transport other than diffusion, convection, or
ionic migration).

5. Discussion

In the present article, we discussed in detail two single enzyme reaction systems which
lead to nonlinear dynamical behavior. Taking into account that the hemin — hydrogen
peroxide — sulfite reaction also displays various types of oscillations (HAUSER et al.
2001 b, 2002), and that there are more or less unequivocal reports that other minimal
enzymic systems may induce rhythmic dynamics (TEMMINCK GROLL 1917, DAVISON
et al. 1986, HUBNER and WOLNA 1994), it is concluded that oscillatory or rhythmic dy-
namics are a general behavior of reaction systems consisting only of a single enzyme and
their substrates. Thus, systems at the “low” hierarchical level of organization such as that
of single enzyme reaction systems, may already exert the function of biological rhythms,
pacemakers, or clocks.

The dynamics of single enzyme reactions systems can be very rich. In addition to
simple periodic oscillations, periodic oscillations of higher complexity, quasiperiodic,
chaotic, and bursting oscillations have been observed in single enzyme (and enzyme-
model) systems. While the more complex dynamic regimes are not necessarily real-
ized in every oscillating minimal enzyme system, the “fundamental” rhythmic dy-
namics, i.e. periodic oscillations of simple periodicity, are found in all of the oscilla-
tory systems. The concrete physiological role of oscillatory behavior differs from
enzyme system to enzyme system — and frequently this role is not even known. A phy-
siological role for more complex types of oscillatory dynamics, especially that of qua-
siperiodic and chaotic dynamics, has not yet been identified. By contrast, periodic and
bursting oscillations are known to possess biological significance as pacemakers and as
a part of signal transduction cascades (GLASS and MACKEY 1988, GOLDBETER 1996).
Typical signal transduction occurs mainly via oscillations of second messengers, such
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as Ca®*, or H,0, and O, ", and the information content is assumed to be encoded in the
form and frequency of the oscillations. It is remarkable that one of the detailed single
enzyme systems discussed in the present article, the PO reaction, may interact with or
even be a part of the signal transduction system involving the secondary messengers
H202 and 027.

Recently, we have presented evidence that oscillations may serve further biological
purposes in addition to the classical tasks of generating rhythms and of transporting in-
formation. As shown for the PO reaction, oscillatory dynamics may be a tool developed
by nature to avoid inactivation of enzymes by toxic reaction intermediates. A similar
mechanism may also be effective in the case of Ca®* oscillations, where rhythmic dy-
namics allow high peaks of Ca®* concentration (and hence signal transduction) by keep-
ing reasonably low average levels of (the otherwise cytotoxic) Ca>*.

The nonlinearities leading to rhythmic dynamics in single enzyme reaction systems
may stem from a variety of sources. This is even the case, if one compares single en-
zyme systems where the enzymes (or enzyme model compounds) carry structurally simi-
lar active centers, as in the cases of peroxidase, the cytochrome P450 model compound,
and hemin. Here the active centers are always metalloporphyrin moieties. Nevertheless,
the sources of nonlinearity are different: In the PO reaction and in the hemin — H,O, —
sulfite system, the nonlinearities are found in the kinetic reactions. However, the role of
these two enzymes is different in the reaction mechanisms: while the peroxidase (in the
PO reaction) is involved in the production of the autocatalytic species (which accounts
for the nonlinearities), the task of the hemin (in the hemin — H,O, — sulfite system) is to
limit the production of the autocatalytic species. The source of the nonlinearity in the
biomimetic cytochrome P450 model system is not known so far, but it is likely that the
nonlinearity arises from an interplay between the reaction kinetics and the transport of
electrons from the aqueous phase to the lipid domain of the phospholipid bilayer.

To conclude, our studies indicate that minimal enzyme reaction systems, which con-
sist only of a single enzyme and its substrates, may display oscillatory behavior under
appropriate reaction conditions. Thus, even reaction systems at the very fundamental
molecular level can be the sources for biochemical and biological rhythms. The fact that
underlying nonlinearities leading to oscillatory dynamics in such minimal enzyme reac-
tions may arise from a variety of mechanistic sources suggests that rhythmic behavior is
a general — and possibly even frequent — feature of single enzyme systems. The biologi-
cal functions of oscillations are often not yet elucidated, and one might expect that a
series of new biological functions (in addition to signal transduction, the action as pace-
maker, and the protection against enzyme inactivation) may be carried out by the rhyth-
mic behavior of enzymes. Thus, further research in the area of the dynamics of single
enzyme reaction systems is expected to reveal substantial new insights into chronobiolo-
gical processes.
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Abstract

Calcium release from clusters of inosital 1,4,5-triphosphate (IP3) release channels is the basic biophysical
mechanism by which Ca®* is released from the endoplasmic reticulum into the cytosol. As small amounts of
Ca®* are released they diffuse through the cytosol where they form spatially and temporally limited struc-
tures — the Ca* puffs. We consider Ca* release through a small cluster of IP; release channels and subsequent
diffusion through the cytosol using a Markov version of the Li-Rinzel model and a computationally more ef-
ficient Langevin approximation. We discuss the effects of Ca>* diffusion on puff amplitude distribution, puff
width distribution and inter-puff interval distribution and compare the results of both methods to determine
whether the Langevin approximation yields accurate answers.

Zusammenfassung

Calcium-Ionen werden durch kleine Gruppen von Ionenkanilen von intrazelluldren Speichern in den intra-
zelluldren Raum transportiert. Dort diffundieren die Calcium-Ionen und werden von Calcium-Pumpen wie-
der in die Speicher aufgenommen. Als Resultat erhélt man rdumlich limitierte Calcium-Funken (sparks oder
puffs). Stochastische Effekte sind wegen der kleinen Anzahl von Kanilen pro Gruppe dominierend und wer-
den gewohnlich durch numerisch aufwendige Markov-Prozesse beriicksichtigt. Wir stellen hier eine verein-
fachte Methode vor, die auf der Konstruktion von stochastischen Differentialgleichungen fiir die Zustinde
der Ionenkanile beruht. Charakteristische Eigenschaften der Calcium-Funken werden mit Markov-Prozes-
sen und stochastischen Differentialgleichungen simuliert und die Resultate werden verglichen.

1. Introduction

Many important cellular functions are regulated by intra- and intercellular Ca** signals.
They are involved in the insulin production of pancreatic f-cells (CHAY and KEIZER
1983), in the enzyme secretion in liver cells (for a review, see e. g. DUPONT et al. 2000)
and the early response to injury of brain tissue (CORNELL-BELL et al. 1990) and corneal
epithelia (KLEPEIS et al. 2001).

Key for the Ca®* release is the inosital 1,4,5-triphosphate receptor channel (IP;R) on
the membrane of the endoplasmic reticulum (ER). It is thought (DEYOUNG and KEIZER
1992) that the IP5 receptor has four subunits where three of them have to be activated for
the IP;R to be open. According to the DeYoung-Keizer model, each subunit has three
binding sites, one for IP3 and two for Ca**. The first Ca®* binding site activates the sub-
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unit via Ca®* induced Ca®* release (BEZPROVANNY et al. 1991) while the other Ca**
binding site inactivates the subunit.

Recently, high-resolution recordings have shed new light on the elementary intracel-
lular Ca®* release from internal stores. It has been observed that the IPsRs are spatially
organized in clusters with only 20-50 release channels and of a size of about 100 nm.
The calcium release through such small clusters is subject to random fluctuations due
to thermal transitions of individual IPsRs. When Ca”* is released from the ER through
an IP5R, it rapidly diffuses within the cluster (in a few ps) and into the intracellular space
where it is absorbed by buffers and pumped back into the ER, resulting in a spatially and
temporally limited event that has been termed calcium puff or spark (CHENG et al. 1993,
MAK and FOSKETT 1997, CALLAMARAS et al. 1998, MELAMED-BOOK et al. 1999, GONZzA-
LEZ et al. 2000). Ca”* blips arising from the opening of single release channels have
been observed as well (BooTrmMAN et al. 1997, Lipp and NIGGLI 1998, SUN et al. 1998).

In this paper we consider small clusters of Ca”* release channels where the released
Ca”" is diffusible in the intracellular space. We study the effects of Ca®* diffusion on the
distributions of puff-amplitude (Section 3), lifetime (Section 4) and interpuff-interval
(Section 5).

2. Markov Li-Rinzel Model for an Isolated Cluster of IP;Rs

The first theoretical model for agonist-induced Ca®* oscillations based on the micro-
scopic kinetics of IPy and Ca®* gating of the IPsR was proposed by DEYOUNG and KEI-
ZER (1992). The model assumes that three equivalent and independent subunits are in-
volved in conduction of an IP;R. Each subunit has one binding site for IP5 (site 1) and
two binding sites for Ca®*; one Ca** binding site (site 2) for activation, the other (site 3)
for inhibition. The subunit is conducting only when site-1 and site-2 are bound and site-3
is unbound. Thus, each subunit may exist in eight states with transitions governed by
second-order and first-order rate constants. The scheme in Figure 1 illustrates the pro-
cesses at a single subunit (DEYOUNG and KEIZER 1992). For the rate constants the same
rates as in DEYOUNG and KEIZER (1992) are used (see Tab. 1).

The subunit is activated in the state S;;¢ only. The transition rates between the states
of an IP; channel differ significantly for a large range of intracellular Ca®* concentra-
tions. The binding and unbinding of IP; is the fastest process, followed by the binding
of Ca”* to the activation binding site (approximately a factor of 10 slower) and by the
binding of Ca®* to the inactivation binding site (another factor of 10 slower). Using a
type of multiple time-scale expansion, LI and RINZEL (1994) were able to separate the
kinetic equations for the IP; channel in a fast set, an intermediate set and a slow set of
equations. The fast and intermediate sets of equations are solved explicitly, thus elimi-
nating all but the slowest variables. As a result they obtain the following set of differen-
tial equations on the slowest time scale with two variables only:

d 2

d_j — —clm;n;]ﬁ (¢ — cgr) — c1va(c — cgr) — %, [1]
dh 1

—=—(hs — h 2
dt ‘L'h( ) [2]
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where c is the intracellular Ca®* concentration and cgg the Ca®* concentration in the ER.

Fig. 1 The binding scheme of a single unit of the IP; receptor. S, denotes the states of the IP; receptor
where n, m, | can assume the values O and 1. The first index indicates the state of the IP; binding site, the
second the state of the activating Ca>* binding and the third index the state of the inhibiting Ca** binding
site. If an index is O the respective binding site is unbound; if it is 1 the respective binding site is bound. The
values for the rate constants a, and by are the original values used in DEYOUNG and KEIZER (1992). The con-
centration of IP5 is denoted by p and the intracellular concentration of Ca** is denoted by c.

Tab. 1 Parameter values for the DeYoung-Keizer model of the IP; receptor. For the meaning of the rate
constants, see Figure 1.

a, = 400/(uM s) by = 52/s
> = 0.2/(uUM 3) by =0.21/s
a3 = 400/(uM s) by =377.2/s
a,=0.2/(uUM 3) by = 0.029/s
as = 20/(uM s) bs = 1.64/s

Tab. 2 Parameter values for Equation [1].

Vi 6/s

12 0.11/s

V3 0.9/(uM s)
ks 0.1 kM

The first term on the right hand side of Equation [1] denotes the channel flux density
from the ER into the intracellular space, the second term the leak flux density and the
third term the pump flux density from the intracellular space into the ER. Equation [2]
for h, defined as the sum of the fractions of the channels in de-inactivated states, has the
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form of a two-state gate. The power /4’ in Equation [1] indicates that all three indepen-
dent subunits have to be de-inactivated in order for the channel to be open. The expres-
sions m>_ and n’_ describe the average fraction of the channels with bound IP; and bound
activating Ca”*, respectively. The values of the parameters above are

p c 1
Mog =———i Mpg=—"" Th=—7
p+d ct+ds’ " 402 +c)
O p+d b; 3]
hoo = : =d Codi=— .
O +c 0 2p+d3 a;

The dynamic properties of the Li-Rinzel model in comparison with the De Young-Keizer
model can be summarized in the bifurcation diagram in Figure 2. At concentrations p of
IP5 of less than 0.354 uM and larger than 0.642 pM, the Li-Rinzel model predicts fixed
points, i.e., the Ca®* concentration approaches a constant value after an initial transient.
A super-critical Hopf bifurcation generates Ca”* oscillations for 0.354 M <p <
0.642 uM. The curves in the regime 0.354 uM < p < 0.642 uM represent the minima
and the maxima of [Ca®'] during the oscillations. The Li-Rinzel model (dashed line)
reproduces the bifurcation diagram of the DeYoung-Keizer model (solid line) well.
The upper Hopf bifurcation, however, is somewhat shifted. The fixed points for
p>0.642 uM and p < 0.354 uM are reproduced almost exactly.

We consider a cluster of N IP;Rs, where N can be a small number and thus a stochas-
tic description is necessary. A stochastic version of the Li-Rinzel equations can be ob-
tained by replacing 4> by the fraction of de-inactivated channels Nj-open/N Where N is

N DeYoung-Keizer
05 ... LRinzel

lcaz"]rr.ax. min (‘U.M)

0_0 i Il i 1 i 1 i 1 i
0.0 0.2 0.4 06 0.8 1.0

[IP3] (uM)

Fig. 2 Bifurcation diagram, i.e. the Ca®* values of the maximum and the minimum as a function of IP;
concentration p, of the deterministic Li-Rinzel model (dashed line) and the DeYoung-Keizer model (solid
line). Oscillations are possible between the two Hopf bifurcations, i.e. 0.354 pM < [IP5] < 0.642 uM in the
Li-Rinzel model. For all other values of p, fixed points are observed.

154 Nova Acta Leopoldina NF 88, Nr. 332, S. 151-167



Statistical Properties of Ca** Puffs

the total number of IP3Rs, and Nj,_open is the number of channels that are de-inactivated

(SHuarl and JuNnG 2002a), i.e.

dc 3 3 Nhfopen V362

o —cymi n;, N ( —k§ T
The opening and closing rates a(p) and f(c), respectively, of this h-gate can be obtained
from Equation [3] as

a(p) = a2Qax(p);  Plc) = axc. (5]

The kinetic scheme for the 4 states of the three h-gates of the Li-Rinzel model is given in
Figure 3.

(4]

¢ —cgr) — cva(c — cpr) —

3a 20 o

0[38128 8231383

S

Fig. 3 The kinetic scheme of the h-gates of the Li-Rizel model. The symbol S, denots an IP;R with 7 h-
gates open (not inhibited). The channel is open in the state Ss.

1
(A) Li-Rinzel model  N=20, [IP3]=0.3

—_— 0 1
i 1 (B) [IP3]=0.5
g‘m
O 0 - ‘ -
= 14 (C) [IP3]=0.8

0 1 \ h

0 100 200 300 400 500
Time (s)

Fig.4 Calcium traces obtained from the Markov Li-Rinzel model for a cluster of 20 IP;Rs at three charac-
teristic values of p: (A) for p =0.3 uM; (B) for p =0.5 uM and (C) for p = 0.8 pM. The time (horizontal

axis) is measured in seconds.
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Stochastic simulations of such a scheme can be performed using standard Markov pro-
cesses (see e. g. SCHNEIDMAN et al. 1998 in different context). As a result one obtains at
each time step the number of open h-gates Ny, open Which enters into Equation [4] which
is subsequently being integrated. Within an isolated cluster of few IP;Rs the calcium
concentration can be assumed uniform across the cluster.

Calcium traces obtained from a cluster of 20 IP3Rs are shown for three different
values of IP5 concentration p in Figure 4. For p = 0.3 uM, i.e., below the Hopf bifurca-
tion of the deterministic model (p = 0.354 uM), a trace is shown in Figure 4 A. While the
deterministic equation predicts a fixed point (see Fig. 2), the stochastic dynamics gener-
ates release events — the Ca?* puffs. During a puff, a significant fraction of the IP;Rs
open up for a short amount of time to release Ca®" into the intracellular space. The tra-
jectory for p = 0.5 uM is shown in Figure 4 B. While the deterministic solution (see
Fig. 2) predicts periodic calcium oscillations, the stochastic model generates a spike
train that looks not very different from the trajectory for subthreshold IP; concentra-
tion. The situation is similar for p = 0.8 uM in Figure 4 C.

Detailed studies of the statistical features of calcium puffs generated by isolated clus-
ters have been carried through in previous work (SHUAT and JUNG 2002 a, b, 2003).

3. Ca®* Puffs of a Single Cluster in a Diffusible Medium

The next step towards a more realistic description of Ca®*puffs is to take into account
that the released calcium can diffuse into the intracellular space (FALCKE et al. 2000).
We study a patch of the ER membrane that we assume to be planar. The cluster of
IP;Rs controls the flux of Ca** from the ER to the intracellular space. We further as-
sume that the cell is flat so that the concentration of Ca®* is uniform across the cell.
The Ca®* concentration thus depends only on the 2D coordinates (x, y) of the flat mem-
brane of the ER. The size of the cluster of IP;Rs is of the order of 0.1 pm while the
diffusion coefficient of Ca®* is of the order of 0.01 pm?/s—50 pm?/s resulting in a diffu-
sion length [ ~ v/Dt ~ 0.1 pm — 7 um, i.e., at least as large as the size of the cluster of
the IPsR. Combining the Markov Li-Rinzel equation with Ca”* diffusion yields the fol-
lowing stochastic partial differential equation

Jdc 3 3 Nhfopen

] :2
— = \|cvim_n (C_CER) _C1V2(C_CER) - 2
ot V1M o Moo N

W) Z(x) Z(y) + DV?c [6]

with the form function

(x) = 1 for —L/2<x<A/2
10 for |x| > A/2

With the help of the form function we limit the release of Ca®* from the ER to the intra-
cellular space to a cluster area of L?. The cluster is located at the origin of the coordinate
system and is considered a point source of Ca** regardless of its actual physical size. In
order to incorporate the effect of the point source into the numerical solution of Equation
[6] (with a finite discretization step x), the form function in Equation [6] must be re-
scaled with (L/x)*. This procedure is analogous to the point charge concept in electrody-
namics where the point charge is represented by a d-function with strength q in the pre-

[n)

[7]
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Fig.5 Snapshots of Ca** distribution generated by a cluster of IP;Rs located at the center of the 2D ER
membrane. The size of the simulated area is 25 pm? while the cluster size is 0.01 pm?. Lighter gray indi-
cates higher Ca>* concentration. The temporal sequence of the snapshots is from upper left to lower right.
The time interval between consecutive snapshots is 2 s.

factor. It saves us to use integration steps that are small in comparison with the size of
the release cluster. The Laplacian in Equation [6] is the two dimensional Laplacian in
x—y coordinates. The number N represents the total number of IP;Rs in the cluster and
Nh-open denotes the open number of channels at time 7. To solve Equations [6] and [7], we
used an explicit linear algorithm in combination with a Monte-Carlo Markov simulation
of the gating processes of the channels. The cluster of IP;Rs has been considered Ca**
clamped. In Figure 5, we show a few snapshots of an evolving Ca** puff. Before we
show detailed results of these simulations, we introduce an approximate method for this
problem.

4. Langevin Approximation to the Stochastic Li-Rinzel Model

The drawback of the stochastic methods described above is that they become computa-
tionally very demanding. In the following we describe an alternative scheme resulting in
stochastic differential equations (Langevin equations) that are easy to implement and
computationally more efficient. The first approximation is that all three h-subunits can
be replaced by a single two-state subunit with the same opening and closing rates a(p)
and f(c). This assumption can be somewhat motivated but justified only by the success
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of the resulting Langevin equations. The motivation is that all subunits are clamped to
the same Ca”* concentration and their opening and closing events are thus somewhat
correlated. For a fixed Ca* concentration, the probability of finding N open single-sub-
unit channels in a cluster of N, channels obeys the birth-death master equation

OP(N, 1)
ot

=G (N-1)P(N - 1,1)

—(G*(N)+ G (N))P(N,t) + G~ (N + 1)P(N + 1,1), [8]

where

G'(N) =N, —N) a, [9]

G (N)=NBy .
The following scaling transformation

n=N/N,
G+ (N)

N,

G_AgtN) =np,

p(n) = P(Nn), [10]

g+ ()= =(1—n)a,

g (n)=

and the subsequent Taylor expansion in powers of e = 1/N,

GV = 1) = G- e) == =) + 3 5 ¢ 55)
G-+ =G o) = (=g )+ 1 () e

PN+ 1) = PN (1-+.5) = pla+0) = pln) + Y 5 ¢ (51) o0

P(N—1)=P(N,(n—¢))=pn—¢)=pn)+ i l 8"<—£1>1p(n), [11]

yields after inserting Equation [11] into Equation [8] and comparing coefficients of equal
powers in ¢ the Kramers-Moyal expansion

O, 1) 1 2\
0= ; 3¢ (=g, ) M) pn, 1), [12]
with the Kramers-Moyal coefficients
Mi(n) = g*(n) + (=1)" g~ (n) = (1 =) o, + (=1)" nf. [13]

158 Nova Acta Leopoldina NF 88, Nr. 332, S. 151-167



Statistical Properties of Ca** Puffs

We truncate the Kramers-Moyal expansion after the second term (the diffusion term) and
obtain the Fokker-Planck equation
op(n, 1) 0 1 o
=——M t
8t 0]’! 1 (I’L) P (l’l, ) +

with the drift and diffusion coefficients
My(n) = g"(n) — g (n) = (1 —n) oy — nf,
My(n) = g™ (n) + g (n) = (1 —n) ay +np,. [15]

Note that this truncation does not guarantee the preservation of the exact stationary prob-
ability (HANGGI and JUNG 1988). An equivalent Ito-type Langevin equation can be found
as

2—]\[1 ﬁMZ(n’) p(n7 t)v [14]

% =ay(l —n) = fn+ &)
(@) at) = 2B )
{€@) =0 [16]

with Gaussian white noise &(f). Fox and Lu (1994) and later ScHMID et al. (2001)
have used such a scheme to describe action potentials generated by clusters of neuro-
nal ion channels. The Langevin approximation of the Markov Li-Rinzel model thus
reads

de 33,3 vsc”
- —cyvimgn (¢ — cgr) — c1va(c — cer) — 2+ c?
% — an(1 = h) = Byh + (1)
(I =h)+Bh o
(e(r)) =———Fy—-0 1)
(E(0) = 0. 7

It is almost as simple as the deterministic Li-Rinzel model except for the noise term in
the second equation.

Integrating these equations with a first order solver, the stochastic term results in one
additional term

h(t+ At) = (ap(1 = h(t)) — p,h(t)) At + V2K At R,

_an(L=n)+Byn
o 2N, ’

K [18]
where R, denotes a Gaussian random number with unit variance. The most significant
advantages of the Langevin equations are that they are simple to implement and that
their computational demand does not grow with increasing cluster size N, In
Figure 6, we compare the calcium release and the fraction of de-inactivated channels
from an isolated cluster of IP;Rs obtained with the Markov method and the Langevin
method.
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Fig. 6 Simlation results for a cluster of 20 IP3Rs obtained from the Markov Li-Rinzel model (A) and the
Langevin model (B).

The Langevin approach for the cluster in the diffusible medium results in the following
set of nonlinear and stochastic partial differential equations:

02
%: <C]l’f’licnioh3(c — CER) — C1V2(C — CER) - #) E(X) E(Y) + szc [19]
0 Qap N
o= (~tasto) + e 4 — s ) 20) 20 20

an(l = h) + Buh s

t—1
N, (t—1)

(&) &) =
{€() =0

with the form function in Equation [7]. Note that the single cluster (in the origin of our
coordinate system) acts as a point source regardless of the actual physical size of the
cluster. The strength of the source in Equation [19] thus must be rescaled by the factor
(L/Ax)*. The gating variable £ is the single gating variable describing the dynamics of
the single entire cluster.
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5. Results
5.1 Puff Amplitude Distributions

Since the number of open channels is a stochastic variable, the release of Ca®" is also ran-
dom (see Fig. 6). The amplitudes of calcium puffs have been measured using fluorescent
imaging, and although it is hard to gauge the luminocity-Ca** precisely, histograms of max-
imum relative luminoscity should be similar to puff amplitude distributions (PRATUSEVICH
and BALKE 1996, BooTMAN et al. 1997, Izu et al. 1998, SMITH et al. 1998, SUN et al. 1998,
THOMAS et al. 1998, CHENG et al. 1999, JIANG et al. 1999, CALLAMARAS and PARKER 2000,

1o
02 \ Markov LR 2D model A
A

02 04 06 08 10

Distribution of Puff Amplitude

o 3
az-\ Langevin LR 2D model
*
*

PuffAmplitude {micro M}

Fig. 7 Ca®" puff amplitude distribution for a cluster of 20 IP5Rs at p = 0.3 uM at various values of the dif-
fusion coefficient. Panel (A) is obtained with the Markov Li-Rinzel model (Equations [6] and [7]) while the
results in panel (B) has been obtained with the Langevin method (Equations [19] and [20]).
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MARCHANT and PARKER 2001, R10s et al. 2001). While simulated puff amplitude distribu-
tions generated by isolated clusters have been discussed recently (SHUAI and JUNG 2002 a,
2003), we discuss here the effects of Ca®* diffusion on the puff amplitudes. Calcium diffu-
sion removes Ca”* from the cluster site, smearing out the spatial distribution of Ca**. The
amplitudes are therefore expected to be smaller. In Figure 7 we show puff amplitude distri-
butions for a cluster of 20 IPsRs and p = 0.3 pM and different values of the Ca** diffusion
constant. The results in panel (A) are obtained with the Markov Li-Rinzel model (Equations
[6] and [7]), while the results in panel (B) are obtained with the Langevin method (Equations
[19] and [20]). As expected, diffusion cuts down on the number of large puffs. It actually
causes a peaked distribution to become almost simply decaying. The different possible
shapes of puff amplitude distributions were subject of a recent controversy. CHENG et al.
(1999) suggested that the original calcium puffs should have a monotonically decreasing
amplitude distribution. In contrast, R10s et al. (2001) reported on either decaying ampli-
tude distributions or distributions with a central peak. Similarly, we have reported for the
isolated clusters (SHUAI and JUNG 2002 b), various types of puff amplitude distributions
are possible based on simulations depending on the size of the cluster, concentration of IP3
and also the Ca”* diffusion constant. The agreement between the results of the Markov mod-
el and the Langevin method is reasonably good.

5.2 Puff width Distributions

Ca”* puffs are temporally limited events. We define the temporal width of a Ca>* puff by
the duration the Ca®* concentration remains above half of its peak value during the puff.
Puff width distributions have been recorded experimentally (SUN et al. 1998, THOMAS
et al. 1998, HaAKk et al. 2001). Ca”" diffusion reduces the Ca>* concentration at the site
(see Fig. 7) and thus decreases the closing rates f3, of the h-gates of the stochastic Li-
Rinzel model. Thus we expect an increase of the puff width with increasing diffusion
coefficients. In Figure 8 (A), we show the puff width distributions of a cluster of 20
IP;Rs at p = 0.3 pM at various values of the Ca®* diffusion coefficient. In panel (B) we
display the results obtained from the computationally faster Langevin method. The Lan-
gevin method reproduces the data from the Markov model very well. In general, the dis-
tribution broadens with increasing Ca* diffusion coefficient.

5.3 Inter-puff Interval Distribution

Another quantity that has been used to characterize Ca* puffs from experiments is the
time interval between two consecutive Ca>* puffs (MARCHANT et al. 1999). These inter-
vals are not constant but distributed according to an interval distribution. In neuroscience
such distributions are widely used to characterize neuronal spike patterns. Useful infor-
mation about recovery times and coherence can be extracted from these distributions. In
Figure 9, we show inter-puff interval distributions obtained with the Markov Li-Rinzel
model and the Langevin method. While the puff-width distribution becomes broader
and the average puff wider with increasing Ca®* diffusion, the opposite is the case for
the inter-puff interval distribution. The distribution becomes narrower and shifts to smal-
ler average intervals.
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In Figure 10, we show time traces of the Ca®* concentration at the site of the release
cluster with a small and a large Ca** diffusion coefficient. The trace for large Ca>* diffu-
sion coefficients is different in two more aspects. First, the puff frequency is higher, i.e.,
the time intervals between two spikes is smaller (thus the shift of the average inter-puff
interval observed in Figure 9). Second, the Ca”* baseline is a bit higher as in the case
with the smaller Ca** diffusion coefficient. The latter is a consequence of the retreating
Ca”" puff after the closing of the cluster (see the dark dot in the center of Figure 5). The
larger Ca®" level creates a larger fraction nio (see Equations [3] and [6]) and thus ex-
plains the larger spiking rate.

A
0.20 u'. Markov LR 2D model

0.15 j

*}» —O—D=001

0.10 4 —— D0
< ] i el —te— D=0
$ 0.05- o
g ] B WK
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5 0 5 10 15 20
; B
2 0.20
2 | Langevin LR 2D model
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5 0.15 4 ¥

*
/ A

B

] 5 10 15 20
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Fig. 8 The distribution of the puff widths is shown for a cluster of 20 IP3Rs at p =0.3 uM and various
values of the Ca®" diffusion constant. Panel (A) displays results obtained with the Markov Li-Rinzel model
and panel (B) results obtained with the Langevin method.
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Fig. 9 Inter-puff interval distributions generated by a cluster of 20 IP;Rs at p = 0.3 uM. The results in
panel (A) are obtained with the Markov Li-Rinzel model while the results in panel (B) are obtained with the
Langevin method.

6. Conclusions

We have been using a stochastic version of the Li-Rinzel model to describe Ca”* re-
lease from the ER into the cytosol through clusters of IP°Rs with few channels only.
Intracellular diffusion of the released Ca®* determines the statistical properties of Ca”*
puffs. Diffusion-facilitated puff termination decreases the average Ca** amplitudes
while the puff lifetimes become longer. While the accuracy of the stochastic Li-Rinzel
model for isolated clusters of IP;Rs (without diffusible Ca**) with respect to the
DeYoung-Keizer model has been tested in SHUAI and JUNG (2003), we have tested
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Fig. 10 Traces of Ca®" concentration obtained from the Markov Li-Rinzel model are shown in the upper
panel for two values of the Ca* diffusion coefficient. The lower trace for larger D exhibits a higher puff-fre-
quency. Similar behavior can be obtained with the Langevin method, as shown in the lower panel.

here the accuracy of the Langvin approximation with respect to the Markov Li-Rinzel
model in the presence of Ca®* diffusion. Although the Langevin method is much faster
and easier to implement than the Markov-Monte-Carlo schemes it delivers results that
are in good agreement with the Markov Li-Rinzel model. For larger scale simulations
of entire cells or tissues the Monte-Carlo Markov schemes become computationally
very demanding and the Langevin approximation offers an alternative that is faster,
but still delivers accurate results.
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and Biological Applications

Werner EBELING (Berlin) and Frank SCHWEITZER (Berlin, Bonn)

With 9 Figures

Abstract

After summarizing basic features of self-organization such as entropy export, feedbacks and nonlinear
dynamics, we discuss several examples in biology. The main part of the paper is devoted to a model of active
Brownian motion that allows a stochastic description of the active motion of biological entities based on
energy consumption and conversion. This model is applied to the dynamics of swarms with external and in-
teraction potentials. By means of analytical results, we can distinguish between translational, rotational and
amoebic modes of swarm motion. We further investigate swarms of active Brownian particles interacting via
chemical fields and demonstrate the application of this model to phenomena such as biological aggregation
and trail formation in insects.

“Every theory, whether in the physical or biological or social sciences, distorts reality in that it oversimpli-
fies. But if it is a good theory, what is omitted is outweighted by the beam of light and understanding thrown
over the diverse facts.”

Paul A. SAMUELSON

Zusammenfassung

Nach einer Zusammenfassung elementarer Merkmale der Selbstorganisation, wie z.B. Entropie-Export,
Feedbacks und nicht lineare Dynamik, werden in diesem Bericht verschiedene Beispiele aus der Biologie er-
ortert. Der Hauptteil beschéftigt sich mit der aktiven Brownschen Molekularbewegung, welche eine stocha-
stische Beschreibung der Bewegung biologischer Einheiten auf der Basis von Energieverbrauch und -um-
wandlung ermoglicht. Dieses Model findet bei der Dynamik von Schwirmen mit externalen und
Wechselwirkungspotentialen Anwendung. Mit Hilfe analytischer Ergebnisse kann zwischen translationalen,
rotationalen und amoebischen Formen der Schwarmbewegung unterschieden werden. Auflerdem werden
Schwirme aktiver Brownscher Partikel, die iiber chemische Felder aufeinander wirken, untersucht und die
Anwendung des Models bei Phanomenen, wie z. B. biologischer Aggregation und Pfadbildung bei Insekten
demonstriert.

,Jede Theorie, ob aus der Physik, der Biologie oder den Sozialwissenschaften, verzerrt die Realitit, indem
sie vereinfacht. Ist es jedoch eine gute Theorie, wird das, was weggelassen wird, aufgewogen durch den Fo-
kus von Licht und Verstédndnis, der iiber die verschiedenen Fakten gelegt wird.

Paul A. SAMUELSON

1. Introduction

About 1845, Hermann VON HELMHOLTZ, the great pioneer in applications of physics to
biological systems, developed the concept “Physics of life” (MARKL 1995) in compa-
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nionship with his fellows Emil Du Bors-REYyMOND, Ernst Wilhelm voN BRUCKE and
Carl Lubwig. Their statement, that life is not in contradiction to physical laws, was also
later elaborated by Ludwig BoLTZMANN and others. But only in the 20" century, the
investigations of Erwin SCHRODINGER, Max DELBRUCK, Ludwig VON BERTALANFFY,
Ilya PRIGOGINE, Manfred E1GEN, Mikhail VOLKENSTEIN and others led us to some under-
standing of the necessary conditions for the evolution of living systems (VOLKENSTEIN
1994). Their success was based on a specific theoretical approach to biological pro-
blems that also implied some reductionism. “Many biologists do not believe that ... biol-
ogy can be given a theoretical foundation. Rather they insist in a holistic approach. ...
Physicists, on the other hand, have not always appreciated that a theory of biology has to
start from biological facts. They often thought that biology is just another field to which
they could immediately apply their equations.” This quotation from EIGEN’s foreword to
VOLKENSTEIN’S (1994) book indicates that the road to a fruitful collaboration between
physicists and life scientists the “Helmholtz road” — is full of obstacles. Nevertheless,
we share the view that at the end of this road we are lead to some useful results, at least
to some better understanding of biological facts. This shall also be demonstrated by the
examples discussed in the following sections.

We start our considerations with some general remarks on self-organization and non-
linear dynamics in biology. In particular, we summarize some basic physical principles
that lead to the emergence of complex structures in biological systems, such as openess,
irreversibility, entropy export and feedback processes. It is well known from the thermo-
dynamics of irreversible processes that systems may exhibit a rich variety of complex
behavior if there is a supercritical influx of free energy. This energy may be provided
in different forms, i. e. matter (chemical components, resources), high temperature radia-
tion, or signals. What kind of complex behavior is observed in a system will of course
not only depend on the influx of energy but also on the interaction of the entities that
comprise the system. Among the prominent examples that can be observed in biological
systems are processes of pattern formation and morphogenesis and different types of
collective motion, such as swarming.

The main part of our paper is devoted to the modeling of active motion and coherent
motion that in biological systems can be found on different scales, ranging from cells or
simple microorganisms up to higher organisms, such as bird or fish. Our investigations
are based on a model of active Brownian particles, i. e., particles with an internal energy
depot that can be used for active movement. Considering further nonlinear interactions
between the particles, such as attractive forces or interactions via chemical fields, we are
able to derive a rather general framework for the dynamics of swarms.

By means of both, computer simulations and analytical investigations, we demon-
strate how the superposition of simple microscopic motions may result in a quite com-
plex dynamics of the macroscopic system. In particular, we derive analytical expressions
for the distribution functions that allow distinguishing between different modes of
swarming behavior, such as translational, amoebic and rotational modes of collective
motion. Eventually, we study the dynamics of swarms coupled to chemical fields and
demonstrate the application of this model to phenomena such as biological aggregation
and trail formation in insects.
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2. Self-Organization and Nonlinear Dynamics in Biology

2.1 General Aspects of Complexity

From our daily life experience we know how fragile and complex biological, ecological
and social systems behave. What do we mean by the term “complexity” in a scientific
context? According to our view complex systems are comprised of multiple components
which interact in a nonlinear manner (cf. Fig. 1), thus the system behavior cannot be
inferred from the behavior of the components. More specifically, these systems are char-
acterized by (EBELING et al. 1998):

— structures with many components,

— dynamics with many modes,

— hierarchical level structures,

— couplings of many degrees of freedom,
— long-range spatial-temporal correlations.

8
Cy—f )¢
\_/
/ ‘\ 7 3. Level: Carnivora
o4 /
\ / \ / \ 2. Level: Herbivora
6 .

Fig. I Two graphical representations of the interaction in complex systems: (A) a catalytical network con-
sisting of 8 elements with 14 feedbacks, (B) a hierarchical ecological network.

4 Level: Carnivora

OH [N

N

1. Level: Herbata

As we have learned from nonlinear dynamics, complexity is not restricted to large
hierarchical systems; also relatively simple dynamical models may show compli-
cated behavior. Among the specific features of complex nonlinear processes, we
mention:

— complicated trajectories and chaos,
— manifolds of spatial-temporal structures,
— the limited predictability of future behavior (positive Kolmogorov-Sinai entropy).

Further, we note that complexity may arise in dissipative as well as in conservative sys-
tems. In general complex systems in nature and society are of dissipative nature, i.e.,
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input output

energy of high value

entropy >

production of entropy | entropy >

Fig. 2 Transformation of energy and production of entropy in an open system: the export of entropy is a
conditio sine qua non for self-organization.

they are based on energy “consumption” that allows self-organization processes. This,
however, needs some physical requirements, such as:

— thermodynamic openess, i.e., the system exchanges energy, entropy and matter with
the environment,

— that on average the system exports entropy, i.e., it imports energy of high value and
exports energy of low value (cf. Fig. 2),

— that the system operates far from equilibrium, beyond a critical distance from the
equilibrium state (cf. Fig. 3),

— that the causal relations in the system include (positive and negative) feedback and
feed-forward processes (cf. Fig. 1), i.e., the dynamics of the system is nonlinear.

For further details we refer to the literature (e.g. EBELING et al. 1990, EBELING and
FEISTEL 1994).

2.2 Examples for Physical Models of Biological Systems

It is not intended here to give a complete overview of the vast applications of physical
methods and tools to biological systems. Rather, we pars pro toto mention here only a
few examples, where models based on the theory of self-organization and nonlinear dy-
namics have contributed to our understanding of biological phenomena (cf. also the other
contributions in this volume and references therein):

— Morphogenesis and biological pattern formation: After the pioneering work on mor-
phogenesis by TURING, MEINHARD, GIERER and others, today a well established the-
ory on biological pattern formation exists that is based on the reaction-diffusion dy-
namics of several chemical components (morphogens). It has been successfully
applied to a range of phenomena, such as patterning of animal coats or sea shells,
pattern formation in bacterial colonies or slime molds, biological aggregation — but
also to processes of regeneration and wound healing, organ differentiation, etc. (see
e. g., the contribution by TECHNAU et al. 2003, this volume).
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close to equilibrium: no pumping with energy

normal conditions

order 2. law of thermodynamics chaos

special conditions

far from equilibrium: pumping with energy

Fig. 3 The 2™ law of thermodynamics allows different processes. Pumping with energy leads the system
into states far from equilibrium which may be characterized by the emergence of ordered structures. The re-
laxation into the thermodynamic equilibrium, on the other hand, is accompanied by the disappearance of or-
dered structures.

— Biological rhythms and synchronization phenomena: Given that the various func-
tional units in biological systems act on different time and length scales, the emer-
gence of synchronized behavior is by no means self-evident. Recent research in this
direction has shown for instance how the brain activity is synchronized, or how car-
diac cycles are triggered by excitation waves. As another example, the essential role
of noise could be revealed in the case of stochastic resonance (see e. g. the contribu-
tions by BALAzs1 and Moss 2003, BRAUN et al. 2003, KanTtz 2003, MitTAG 2003,
ORDEMANN et al. 2003, and SINGER 2003, this volume).

— Directed transport and molecular motors: The ability of living cells to generate mo-
tion and forces, e. g. for mobility, contraction of muscles or material transport, could
recently be understood within a physical description. For example, biological motor
proteins which move along linear filaments can be described by stochastic models
coupled to chemical reactions. So-called ratchet models further explain the genera-
tion of directed motion on the microscopic level out of an undirected Brownian mo-
tion (see e. g., the contribution by HANGGI et al. 2003, this volume).

— Neural networks and associative memory: The brain as one of the most complex sys-
tems, known in biology, has also attracted the research activities of physicists since
the pioneering work of HODGKIN, HUXLEY, HEBB, HOPFIELD, and many others. It
became clear that information is encoded not only in the response of the individual
neural cells but also in the joint activity of a population of neurons. Based on these
investigations, new techniques for information storage in associative memories or for
pattern recognition, but also for brain stimulation have been developed. Artificial
neural networks today also find a wide application in analyzing complex data sets
(see e. g., the contributions by SINGER 2003, GRUN et al. 2003, and Tass 2003, this
volume).
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Despite a lot of successful investigations, we have to admit that many problems in the
(physical) understanding of biological processes are still unsolved. Among the most im-
portant are the nature and the origin of biological information processing (EBELING and
FEISTEL 1994, VOLKENSTEIN 1994).

In the following, we will restrict the discussion to a particular example, namely active
biological motion, where we will show in more detail how a physical approach can be
derived and on what reductions it is based.

3. Modeling Active Brownian Movement
3.1 Some Historical Remarks

Brownian motion denotes the erratic motion of a small, but larger than molecular, parti-
cle in a surrounding medium, e. g. a gas or a liquid. This erratic motion results from the
random impacts between the atoms or molecules of the medium and the (Brownian) par-
ticle, which cause changes in the direction and the amount of its velocity, v.

The motion of the particle is named after the British botanist Robert BRowN (1773—
1858), who in 1827 discovered the erratic motion of small pollen grains immersed in a
liquid. He was inclined to explain his observation by so-called “active molecules”, and it
is also reported that he wrote a letter to Charles DARWIN to ask him about his opinion on
this subject.

BrOWN was not the first who observed such a motion with a microscope. For exam-
ple, already the Dutch Anton VAN LEEUWENHOEK (1632-1723), who first discovered
microorganisms with a simple microscope, knew about the typical erratic motion; how-
ever, he considered it a feature of living entities. In 1785, the Dutch physician Jan INGEN-
HOUSZ (1730-1799) also reported the erratic motion of an-organic material dispersed in
a liquid, i. e., powdered charcoal floating on alcohol surfaces, but this became not known
to the non-Dutch speaking world.

The physical explanation of Brownian motion started about 1900 with the seminal
works of Albert EINSTEIN (On the Theory of Brownian Motion, 1905) and Marian SMo-
LUCHOWSKI (On the Kinetic Theory of Brownian Molecular Motion and Suspensions,
1906), but it should be noticed that already in 1900 Louis BACHELIER has derived a
mathematical theory of this type of stochastic processes while investigating price
changes at the stock market.

Brownian motion would be rather considered as passive motion, simply because the
Brownian particle does not play an active part in this motion. It is an undirected motion,
driven by thermal noise. Passive motion can also be directed, e. g., if it is driven by con-
vection, currents or by external fields. Active motion, on the other hand relies on the sup-
ply of energy, i.e., it occurs under energy consumption and energy conversion and may
also involve processes of energy storage. In order to add such a new element to the con-
cept of Brownian motion, we need to investigate possible mechanisms of energy pumping.

The idea of energy supply was first introduced in the context of the theory of sound
and music by HELMHOLTZ (Die Lehre von den Tonempfindungen, 1870) and RAYLEIGH
(On Maintained Vibrations, 1883; The Theory of Sound, 1877). The Rayleigh model of
self-sustained oscillations is based on the assumption of a velocity-dependent coefficient
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Fig. 4 Rayleigh-type velocity-dependent friction coefficient y(v) = —y, + —y,v>. For y(v) <0 “pumping”
dominates, while for y(v) > 0 “dissipation” dominates.

(cf. Fig. 4), that can be negative for a certain range of velocity, i. e., instead of dissipating
energy because of friction, energy can be pumped into the system. That means if a violin
bow transfers energy to the string via friction negative friction occurs. Provided a super-
critical influx of energy, a self-sustained periodic motion can be obtained, the violin
string emits acoustic waves.

In the following we will show how the integration of the ideas about maintained vi-
brations and Brownian motion leads to a new model of active movement. This term will
be used now for all kinds of motions in space and time which are driven by sources of
free energy.

3.2 Brownian Particles with Energy Supply

In this section, we introduce a simple stochastic model of active movement called
“model of active Brownian particles” (SCHWEITZER et al. 1998, EBELING et al. 1999).

Let us consider i =1, ..., N active Brownian particles with mass m located at the posi-
tions r; and moving with the velocity v;. For the equation of motion we postulate:
d\/,‘ ou
—+—=F;+V2D & (t 1
mea o, = F VD al) [

The last term denotes the stochastic force acting on the Brownian particle i with a
strength D, the random function £,(¢) is assumed to be Gaussian white noise. U is the
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potential of external and interaction forces and Fj; is the dissipative force acting on par-
ticle i. It can be specified as:

Fi =—myy; + d@l‘vi. [2]

Here v is the usual passive friction coefficient with the dimension of a frequency. We
assume that the noise intensity D is related to the friction by an Einstein relation D =
mykT, where k is the Boltzmann constant and 7 is the temperature. The second term
(dv;e;) expresses an acceleration of the particle in the direction of v; (a forward thrust)
which is based on the conversion of energy from a internal energy depot e¢; of the parti-
cle. More specifically, we assume that the Brownian particle is able to take up energy
with the rate g, which can be stored in an internal depot e;. The internal energy can be
converted into kinetic energy with a momentum dependent rate mdv;, which results in
the acceleration in the direction of movement. The internal energy dissipates with the
rate ce;, The balance is then expressed by:

% =q—ce; — dvizei. [3]
If the internal energy depot relaxes fast compared to the motion of the particle, we find
for Equation [2] in adiabatic approximation:

d
F,=—mvg (sz) =V (ﬁ - my). [4]

Here g(v?) denotes a velocity-dependent friction function. From now on we will use units
corresponding to m = 1, i.e. v = p. Dependent on the parameter values, the dissipative
force F; may have one zero at v =0, or two more zeros with

2_49 ¢
n=1-3 [5]
A nontrivial velocity lvgl > 0 only exists if gd > ¢y, i.e., if a supercritical supply of energy
occurs. In this case, we also speak about “active particles”. For 0 < vl < lvgl, i.e., in the
range of small velocities the dissipative force F; is positive, i.e., the particle is provided
with additional free energy. On the other hand, for O < lvgl < Ivl, the dissipative force is
negative. Hence, slow particles are accelerated, and fast particles are decelerated.
Assuming v(2)> 0 we consider now two limiting cases. Introducing the bifurcation
parameter { = (dg/cy) — 1, we get for small values of the parameter { the well-known
law of RAYLEIGH (cf. Fig. 4):

v2
F:yC(l—vz> y. [6]

0

In the opposite case, i. e. for large values of {, we get the empirical law found by SCHIEN-
BEIN and GRULER (1993) for the dynamics of cells:

F:y(l—v—vo)v. 7]

This way, our expression for the dissipative force F;, Equation [4] is general enough to
cover interesting limiting cases. We mention that in other models of driven motion (Vic-
SEK et al. 1995) the velocity v is postulated without further investigations.
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3.3 Velocity Distribution and Mean Squared Displacement of Free Active Motion

We are now interested in how known features of Brownian motion, such as the stationary
velocity distribution or the mean squared displacement, change if we consider a super-
critical energy take up (gd > cy) of the Brownian particles. In order to find the velocity
distribution explicitely we have to formulate and to solve the Fokker-Planck equation
corresponding to Equation [1]. We restrict our consideration here to the two-dimen-
sional space and U =0, i.e., there are no external or interaction forces. Following stan-
dard procedures (KLIMONTOVICH 1995), we find from the Fokker-Planck equation the
stationary solution for the velocity distribution (ERDMANN et al. 2000):

oy = ¢ (1492) oxp (=2
P(v)—C<l+cv> exp( 2kT>' [8]

Compared to the Maxwellian velocity distribution of “simple” Brownian particles, a new
prefactor appears in Equation [8] which results from the internal energy depot. For
supercritical pumping, gd > yc, we find a crater-like velocity distribution, which indi-
cates strong deviations from the Maxwell distribution (cf. Fig. 5).

The distribution represented by Equation [8] is an exact result for non-interacting
particles. In the limit of zero noise, D — 0, it obtains the form d(v2 - vz). In this small
noise limit, a result for the mean square displacement is also available (ERDMANN et al.

2000):
((rt)) - r(0?) ) = %f%t +;—32 {exp (— %) _ 1} 9]

0

From Equation [9], we find the effective spatial diffusion coefficient of active Brownian
particles as D = ve/D. This expression leads to rather large values for small D or large
vo- The analytical expressions for the stationary velocity distribution and for the mean
square displacement are in good agreement with computer simulations (SCHWEITZER
et al. 2001) and with measurements on the active movements of granulocytes (SCHIEN-
BEIN and GRULER 1993). We suggest to compare them also with the observations of the
movement of Daphnia (see ORDEMANN et al. 2003, this volume).

0.0012
0.001
P%+) 0.0008
1 0.0006
0.0004
0.0002

Fig. 5 Stationary velocity distribution P°(v) for active Brownian particles in the case of supercritical
energy supply (ERDMANN et al. 2000).
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4. Swarm Dynamics with External and Interaction Potentials

4.1 Dynamics in External Potentials

Let us now consider a swarm of active particles in a two-dimensional radially symmetric
potential U(r) = a(x? + x7), that generates an attractive force towards the center, r = 0. As
the snapshot of the spatial dispersion of the swarm shows Figure 6, we find the occur-
rence of two branches of the swarm, which after a sufficiently long time move on two
limit cycles. One of these limit cycles refers to the left-handed, the other one to the
right-handed direction of motion in the 2d-space.

The radius of the limit cycles can be calculated with the following considerations:
Moving under stationary conditions, the particles have to comply with the additional
requirement to balance between centrifugal and attracting forces, which leads to the con-
dition v*/r = IU'(r)l. For the harmonic potential this results in the stationary radius rg = vo/
wo where the frequency of rotations is given by w = a/m (ERDMANN et al. 2000).

For the motion on the limit cycle, an exact solution of the equations of motion reads
in the deterministic limit:

X = 1o cos (wot + @g) Vi = — romg sin (wot + @)

X = g sin (wot + @o) Vo = rowg €os (wot + o). [10]
2.0
1.0 - :

-1.0 - ]

-2.0 : : :
-2.0 -1.0 0.0 1.0 2.0

X

Fig. 6 Spatial snapshot at =99 of a swarm of 10000 active particles moving in a parabolic potential
(SCHWEITZER et al. 2001).
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Another exact solution is obtained by inversion. Any initial state converges to one of
these attractor states. In the presence of fluctuations, the particles move in the neighbor-
hood of these two limit cycle orbits, which have circle-like projections and are located
on two planes corresponding to the angular momenta L = +vg/w. In this way, the prob-
ability is concentrated on two toroids in the 4-dimensional phase, the stationary distribu-
tion may be approximated by:

q
d b
PO(xl, X2, V1, Vo) = C {1 + % (VZ + aﬂﬂ)] exp { T (VZ + erz)
q
d|L|]»7 L?
1+— - . 11
8 { - ZCV(Z)] xp 2kpTr 1]

Here the first factor represents a shell with given energy in the 4-dimensional phase
space, while the second factor projects out two planes perpendicular to the two possible
directions of the angular momentum, L. In this way two toroids in the 4-dimensional
phase space are generated where the occupation density is concentrated.

4.2 Harmonic Swarms

So far we have neglected any coupling within the swarm of active particles. If the
swarm is not bound by an external potential as discussed above, the absence of inter-
actions leads to the effect that the swarm eventually disperses in the course of time,
whereas a “real” swarm would maintain its coherent motion. A common way to in-
troduce correlations between the moving particles in physical swarm models is the
coupling to a mean value. For example Czirok et al. (1996) discuss the coupling of
the particles’ individual orientation (i.e. direction of motion) to the mean orientation
of the swarm. Other versions assume the coupling of the particles’ velocity to a local
average velocity, which is calculated over a space interval around the particle (CZIROK
et al. 1999).

Instead of an external potential U(r), let us now assume an interaction potential. As
the most simple case we may discuss the global coupling of the swarm to the center of
mass. That means the particle’s position r; is related to the mean position of the swarm
R =1/N X r; via a potential U(r;, R). For simplicity, we may assume a parabolic potential,
i.e., the Hamiltonian for each particle reads now:

v ooa 2 12
Hi=2+3> (ri—n)" [12]
J#i

With respect to the harmonic interaction potential we call such a swarm a harmonic
swarm (EBELING and SCHWEITZER 2001). The coupling to the center of mass corre-
sponds to the assumption that there is now an attractive force between each two parti-
cles i and j which depends linearly on the distance between them. This can be used to
control the dispersion of the swarm. A special case of nonlinear (exponential) interac-
tions between particles on a chain has been analyzed in detail by EBELING et al.

(2000).
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Fig. 7 Snapshots (spatial coordinates) of a harmonic swarm of 2000 active particles. ¢ gives the different
times. Initially, the particles were at rest and at the same spatial position. Note that the picture for # = 50 has
a shifted x;-axis (EBELING and SCHWEITZER 2001).

Figure 7 presents snapshots of a computer simulation of a harmonic swarm of 2000 ac-
tive particles." Due to a supercritcal take-up of energy, the particles are able to move
actively, the interaction, however, prevents the swarm from simply dispersing in space.
Thus, the collective motion of the swarm becomes rather complex, as a compromise
between spatial dispersion (driven by the energy pumping) and spatial concentration
(driven by the mutual interaction).

A closer inspection of the swarm dynamics (EBELING and SCHWEITZER 2001,
SCHWEITZER et al. 2001) reveals that the system basically possesses two nontrivial dy-
namic modes. The first mode corresponds to a flock-like swarm moving coherently with
given direction (translational mode). The second mode corresponds to a rotating Swarm
while the center of mass is at rest (rotational mode). Which of these modes is the target
(attactor) of the collective motion depends both on the initial conditions and on the
strength of noise.

1 A movie of these computer simulations — with the same parameters, but a different random seed — can be
found at http://ais.gmd. de/~frank/swarm-tb. html.
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Let us now characterize the two modes by means of the distribution functions. In the first
mode, the particles move parallel to the velocity of the center of mass, V. Introducing the
relative velocity dv; = v; — V, we get in first approximation the distribution:

b 2
Pori,v) =C [1 + %l Vz} exp {— Z‘I/C—T - % (ri— R)z}
X exp [— kT (g(Vz) (ovi)?+2¢' (V?) (V- 5vi)2)} [13]

Here, g(Vz) denotes the friction function introduced in Equation [4], whereas g’(Vz) is
the first derivative of g(V?). According to Equation [13], the square of the translational
velocity V2 is near to v% and the deviations fluctuate according to the Boltzmann distri-
bution.

As we have shown by means of computer simulations (SCHWEITZER et al. 2001), the
translational mode breaks down for small initial velocities V> << v% (cf. also Fig. 7). In
this case the velocities relative to the center of mass are amplified. On the other hand, the
translational mode also becomes unstable if the dispersion of the relative velocities ap-
proaches the order of vj. In this way, the overall picture is similar to the findings for the
one-dimensional case (MIKHAILOV and ZANETTE 1999).

In the second stationary mode, where the center of mass is at rest R = const., V=0,
the swarm is rotating around the center of mass, and we find in first approximation the
distribution, Equation [11] again, with H; given by Equation [12]:

d % H
Po(r;, vi)=C [1 —|——H,} exp {— ]

2c 2kpT

d|L;| 17 L
1 o -t 14
X[ * 20;’8} exp[ ZkBTr(z)] 4]

The two possible branches of the rotating swarm correspond to the positive/negative an-
gular momenta L = m(x v, — xovy).

There is still a third mode which is realized in the case of very strong noise,
kgT >> mv3. In this case the system does not feel the driving force anymore, hence it
forms a Boltzmann distributed cluster with a stochastically moving center:

H;
Py(ri, v))=Cexp|— . 15
o(ris vi) p[ kBT} [15]
In this way, we have — for a rather special model with linear attraction to the center
obtained a full stochastic description of three swarming modes. Despite our reductionis-
tic approach, our findings agree also with the qualitative description of OKUBO and LE-
VIN (2001), who distinguish between three types of collective animal movement:

— Rectilinear movement: The animals as a whole tend to perform a rectilinear move-
ment, thus forming a tight (cohesive) group.

— Doughnut pattern: When the forward thrust dominates the random force, a group of
animals rotates around an empty center, forming the shape of a doughnut.

— Amoebic movement: When the random force dominates the forward thrust, the center
of mass of animals hardly moves, though the shape of the group fluctuates around a
circular pattern.
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Hence, we conclude that even in the rather abstract description of physical swarm mod-
els, basic features of collective motion and swarm behavior can be recovered and, hope-
fully, also compared with biological observations of translating/rotating swarms of fish
and birds.

5. Swarm Dynamics in the Presence of Chemical Fields

5.1 Models of Biological Aggregation

So far, we have assumed in our model that the linear attraction between any two mem-
bers of the swarm is of physical nature. The results remain also valid if there is a chemi-
cal attraction directed to the center of mass of the swarm. This is a reasonable assump-
tion, e. g. for the description of the dynamics of bacterial colonies (VICSEK 2001). Here,
the chemotactic attraction might be responsible for the widely observed rotational move-
ments of bacteria as Bacillus circulans, Clostridium tetani, Paenibacillus vortex. If A is
the chemotactic coefficient, the attraction of the active particles to the center is now
given by a linear chemotactic force F,., = —Ar. In this case, the two characteristic quan-
tities of our distribution functions derived above read as w3 = A/m and r3 = v3m/A, and
the dynamics discussed above remains the same.

A more elaborated investigation has to consider not only the response of the particles
to the chemical signal, but also the generation of these chemicals by the particles, i.e. a
nonlinear feedback between particles and chemical. In order to describe the chemotactic
response of the particles, we modify the Langevin Equation [1], by replacing the poten-
tial U with a scalar field A(r, f) that describes the spatiotemporal concentration of the
chemical. Assuming that the particles are attracted by higher concentration of the field,
we find:

dv; Oh(r,t)

™ + or
In a biological context, the chemical field can for example represent pheromones pro-
duced, e. g. by ants or other insects in order to communicate with their mates, i.e., it
can be envisioned as a communication medium that contains spatial information pro-
duced by the insects. The chemotactic response to the field is a basic feature of phenom-
ena such as trail formation in ants (EDELSTEIN-KESHET et al. 1995, SCHWEITZER et al.
1997), it also plays an important role in the formation of biological patterns in bacteria
Escherichia coli (BEN-JACOB et al. 1994) or slime molds (HOFER 1999).

For the dynamics of the chemical field h(r; 1), we assume the following reaction-dif-
fusion equation:
N

% = ;sé(r —ri(1)) — kh(r,1) + DpAph(r, ). [17]
It means that changes of the chemical concentration in space and time are governed by
three processes: (i) production of chemical signals by the particles with a rate s at their
current position, r;, (if) decay of the chemical with a rate k, and (iii) diffusion (coefficient

|, = F; + V2D &(1). [16]
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The nonlinear feedback between the particles and the chemical field eventually results in
the formation of aggregates, as the snapshots in Figure 8 show. Biological aggregation
based on chemotaxis is widely found in biological species, such as insect larvae (DE-
NEUBOURG et al. 1990) or myxobacteria (STEVENS and SCHWEITZER 1997, DEUTSCH
1999) that gather guided by chemical signals originated by the individuals.

5.2 Formation of Trails

A more complex dynamics of the particles can be obtained if instead of the simple che-
moattraction described above different chemical fields and a more complex response of
the particles to them are considered. So, let us eventually assume that the active particles
have another internal degree of freedom 0;, in addition to their internal energy depot e;.
The individual parameter 0; may be used to describe different activities and responses to
the field, i.e., the active particles then become agents with a more complex behavior
(ScCHWEITZER 2002).

For example, the production rate of the field, s, may now depend on the internal state
0; € {-1, +1}, i.e., it becomes different for each particle i as follows:

H,' [
5i(0i,1) = 2 [(1+0)) s exp{—B.,(t—1,.,)}

—(1—=0;) s° exp{—B_ (t—1_)}] [18]

Equation [18] means that the active particle, dependent on its internal state #; may pro-
duce one of two different chemicals, {+1} or {-1}, with a rate that exponentially de-
creases in the course of time. Consequently, we now have two different chemical field
components that each are assumed to obey the following reaction equation (diffusion is
not considered here):
N
% = —khy(r,t) + Zs,-(@,-, 1) 6gp0(r —ri(t));0 € —1,+1. [19]

i=1

The effect of the two field components on each active particle may be described by an
effective field that also depends on the internal state 0; of the agent, i.e., the gradient in
Equation [16] shall be replaced by the gradient of the effective field (SCHWEITZER and
TiLcH 2002):

0; oh_, (r 1 )

ohe(r,t) 0, Ohyy(r,1)
or 2 |0, or

The nonlinear feedback between the active particles and the chemical field components
can be summarized as follows: Particles with an internal state 0; = +I contribute to the
field by producing component +I, while they are affected by component —1, and parti-
cles with an internal state 0; =—1 contribute to the field by producing component —1
and are affected by component +l1.

Eventually, we assume that the particles can change their internal state from 6, = —1
to +1 and vice versa, dependent on environmental conditions or events. To be specific,

—(1-0) . [20]
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we may consider that the active particles are initially concentrated in a “nest” (6; = +1)
and move out to search for “food”, distributed in different spatial locations. Once they
found food, their initial state is changed to ; = —1, which means that the successful
particles begin to produce a different chemical (the “success pheromone”). This gives

i

»

Fig. 8 Snapshots of the positions of the active particles (left) and the distribution of the field (right) at dif-
ferent times: (A) ¢ = 100, (B) t = 5000, (C) t = 50 000. (SCHWEITZER and SCHIMANSKY-GEIER 1994)
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new information to those particles that are not successful yet to find the food sources,
while the successful particle is guided back to the nest by the already existing chemical
field component {+1}.

As the result of this nonlinear feedback between the active particles communicating
via two different chemical field components generated by them, we can observe the for-
mation of directed trails between a nest and different food sources (cf. Fig. 9)

We note that, with respect to biology, there are different parameters which may influ-
ence trail following in addition to sensitivity, such as trail fidelity, traffic density, detec-
tion distance, endurance of the trail, navigation capabilities etc. (HAEFNER and CRIST

A C
L ] [ ]
L}
L J -3 L ]
L = L ]
:
B D
' x
- .
2 . .
[ ] [ -

Fig. 9 Formation of trails from a nest (middle) to five randomly placed food clusters, which are assumed
to be exhausted after a number of visits. The distribution of chemical component (-1) (see text) is shown
after (A) 2000, (B) 4000, (C) 8500, and (D) 15000 simulation time steps, respectively (SCHWEITZER et al.
1997).
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1994, EDELSTEIN-KESHET et al. 1995). In contrast, our model considers only minimal
assumptions for the trail formation. Here, the formation of trail patterns is solely based
on simple local chemical communication between the particles, with no additional cap-
abilities of orientation or navigation. The spontaneous emergence of a collective trail
system by means of the active particles can be described as a self-organizing process. It
turns out from the computer simulations that, for different kinds of food sources, the
model generates a distinctive trail system to exploit the food sources, and it performs a
high flexibility in order to discover and to link new sources.

6. Conclusions

As the examples of the previous sections have shown, the approach of active Brownian
particles provides a suitable framework to consider both the energetic conditions for ac-
tive motion and the interactions between the particles — two ingredients essential for
active and coherent movement in biological systems. The collective motion observed
on the “macroscopic” level shows interesting analogies to swarming phenomena found
in flocks of bird, schools of fish, but also in cells or insect societies.

With the established collective dynamics, we observe also the emergence of new
system properties not readily predicted from the basic equations. This process was,
in the beginning of this paper, described as self-organization, i.e., “the process by
which individual subunits achieve, through their cooperative interactions, states char-
acterized by new, emergent properties transcending the properties of their constitutive
parts” (BIEBRICHER et al. 1995). Whether or not these emergent properties occur, de-
pends of course, not only on the properties of the system elements and their interac-
tions, but — as we have pointed out in Section 2 — also on suitable external condi-
tions, such as global boundary conditions, the in/outflux of resources (matter, energy,
information).

For the prediction of the emergent properties from local interactions fundamental
limitations exist which are discussed, e.g. in chaos theory. Moreover, stochastic fluc-
tuations also give unlikely events a certain chance to occur, which in turn affects the
real history of the system. This means, the properties of self-organizing systems can-
not be determined by a hierarchy of conditions, the system creates its complexity in
the course of evolution with respect to its global constraints. Considering, that also
the boundary conditions may evolve and new degrees of freedom appear, co-evolution-
ary processes become important, and the evolution may occur on a qualitatively new
level.

Within our physical approach to these phenomena, we are basically interested in the
question which extensions to a known (physical) dynamics might bridge the gap towards
a more complex (biological) dynamics. Such a stepping stone strategy is quite promis-
ing, as various applications for different biological problems have proven. Of course,
many details of real biological phenomena have necessarily to be dropped, in order to
focus on particular aspects. Let us quote in this context again from EIGEN’S foreword
to the book of VOLKENSTEIN (1994): “The aim of theory is not to describe reality in
every detail, but rather to understand the principles that shape reality.”
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Temporal Scales of Cortical Interactions

Sonja GRON', Alexa RIEHLE?, Ad AERTSEN, and Markus DIESMANN?

With 6 Figures

Abstract

Higher brain functions are attributed to the cortex. Over the years it became clear that information is en-
coded not only in the responses of individual neurons but also in the joint activity of populations of neurons.
Based on theoretical studies it has been proposed that the temporally coordinated spiking activity of many
neurons is a relevant variable for information processing (VON DER MALSBURG 1981, ABELES 1982b) and
that cortical neurons organize dynamically into coherent functional groups (“cell assemblies”, HEBB 1949)
that are distinguished by the coordinated activity of the participating neurons. Our research focuses on the
development of analysis strategies for the identification of neuronal interactions and assembly activity. We
attempt to decipher the spatial and temporal scales of dynamical neuronal interactions, and their relations to
the external world (stimuli and/or behavior).

In order to identify neuronal assemblies, simultaneously recorded neuronal spiking activity needs to be
analyzed with respect to temporal structure. To that end we developed the “unitary event” analysis method
(GRUN et al. 2002 a, b) that detects the presence of conspicuous spike coincidences and evaluates their statis-
tical significance. The analysis of simultaneously recorded neuronal activity in monkey primary motor and
frontal cortex uncovered context-dependent, rapid changes in the patterns of coincident spike activity during
performance of a delayed-pointing task (RIEHLE et al. 1997) or a delayed localization task (VAADIA et al.
1989, AERTSEN et al. 1991, VaADIA et al. 1991), respectively. Spike synchronization occurred accompanied
by discharge rate modulations and in the absence of spike rate modulations depending on the details of the
experimental protocol. The temporal precision of such synchronized events is in the range of a few ms
(GRUN et al. 1999). Data suggest that the composition of significant coincidence patterns changes depending
on the computational demands (GRUN et al. 2002 b), which may be taken as an indication that different as-
semblies are activated in relation to behavior.

In the unitary event analysis a number of different time scales have to be considered and affect different
parameters of the signal. Here we specifically address the different temporal scales and give interpretations
in respect to the dynamics of the neuronal processes.

Zusammenfassung

Die Verarbeitung hoherer kognitiver Leistungen wird der GroBhirnrinde zugeordnet. In den letzten Jahren
stellte sich heraus, daf die neuronale Informationsverarbeitung im Kortex nicht nur durch Aktivititen einzel-
ner Neuronen getragen wird, sondern insbesondere auch durch aufeinander abgestimmte, gemeinsame Akti-
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vitdt von Neuronenverbdnden. Auf der Basis theoretischer Untersuchungen wurde die zeitlich abgestimmte
Spikeaktivitit mehrerer Neuronen als relevante Variable der Informationsverarbeitung vorgeschlagen (VON
DER MALSBURG 1981, ABELES 1982b) und miindet in der Hypothese, dal sich kortikale Neuronen dyna-
misch in funktionelle Gruppen (,.cell assemblies*, HEBB 1949) formieren, welche sich durch koordinierte
Aktivitét der teilnehmenden Neuronen auszeichnen. Unsere Forschung konzentriert sich auf die Entwick-
lung von Analysestrategien, die es erlauben, neuronale Wechselwirkungen und die Aktivitit neuronaler En-
sembles zu identifizieren. Dabei werden die rdumlichen und zeitlichen Skalen dynamischer Wechselwirkun-
gen und deren Beziige zur dueren Welt (Reize und/oder Verhalten) untersucht.

Um neuronale Ensembles zu identifizieren, muf} gleichzeitig abgeleitete Spikeaktivitit in Hinsicht auf
ihre zeitliche Struktur untersucht werden. Hierfiir haben wir die ,,Unitary Event*-Analysemethode entwik-
kelt (GRUN et al. 2002 a, b), welche auffillige, koinzidente Spikeaktivitit detektiert, und auf Signifikanz un-
tersucht. Die Analyse gleichzeitig abgeleiteter neuronaler Aktivitit, gemessen im Motorkortex und Frontal-
kortex von Affen, brachte kontextabhiingige, schnelle Anderungen von Koinzidenzmustern wihrend der
Ausfiihrung eines ,delayed-pointing task® (RIEHLE et al. 1997) bzw. eines ,delayed localization task*
(VaADIA et al. 1989, AERTSEN et al. 1991, VAADIA et al. 1991) zu Tage. Spikesynchronisation trat sowohl
mit als auch ohne gleichzeitiger Ratenmodulationen auf, und variierte je nach experimentellem Protokoll.
Die zeitliche Prizision der synchronisierten Ereignisse betrigt nur wenige ms (GRUN et al. 1999). Die Daten
zeigen auch, dal sich die Zusammensetzung der signifikanten Koinzidenzmuster in Abhéngigkeit von den
Anforderungen dndern kann (GRUN et al. 2002 b), und deuten darauf hin, dafl unterschiedliche neuronale
Ensembles in Abhingigkeit vom Verhaltenskontext aktiviert werden.

Im Rahmen der Unitary-Event-Analyse werden eine Reihe von Zeitskalen beriicksichtigt, die jeweils ei-
nen anderen Aspekt des neuronalen Signals betreffen. In dem hier vorliegenden Beitrag liegt der Schwer-
punkt auf der Darstellung obengenannter Zeitskalen und deren Interpretation in Hinsicht auf die Dynamik
der zugrundeliegenden neuronalen Prozesse.

1. Introduction

Higher brain functions are attributed to the cortex, a highly interconnected network
composed of about 10'” neurons. Each single neuron receives spike inputs from about
10* other neurons and projects its output spikes to about the same number of other
neurons (BRAITENBERG and ScHUz 1991). Initially, recording techniques were limited
to recordings from one channel at a time. Here, the recording was optimized to obtain
the spikes from a single neuron only, or the spikes where left unidentified (e. g. in re-
cordings from nerve fibers). Due to this limitation and also guided by early considera-
tions about the integrative properties of the neuron (SHERRINGTON 1906, EccLES 1957)
researchers concentrated on reproducible changes in the spike rate. ADRIAN (1928) ob-
served that the spike rate of neurons is related to changes in the environment and con-
cluded that the intensity of sensation is proportional to sensory spike rates. Single neu-
rons with their specific characteristics became the building blocks of cortical
processing (BARLOW 1972, 1992, for reviews see MARTIN 1994, 2000). This approach
led to fundamental insights into the neuronal mechanisms of brain function (e.g. LETT-
VIN 1959, HUBEL 1968) and to important theoretical works on information processing
by neuronal networks (McCuLLoCH and P1tTs 1943). The influential book by MINSKY
and PAPERT (1988) pointed out the limitation of this concept (see also VON DER MALS-
BURG 1986D).

The parallel and distributed architecture of the cortex suggested the investigation of
the collective properties of neural networks. HEBB (1949) proposed that ensembles of
neurons, “cell assemblies”, constitute the units of neuronal processing. In this view,
functional groups are formed by the coherent activity of the participating neurons. This
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hypothesis provided the conceptual framework for successful theoretical work on neural
networks (e.g. HOPFIELD 1982, RUMMELHART et al. 1986, AmiT 1989, 1997). These
models exhibit multiple attractor states, the attractors being groups of neurons with ele-
vated spike rates. A prominent example from the experimental literature is the demon-
stration of representation of information by ensembles of neurons (GEORGOPOULOS et al.
1988, 1989).

In parallel, however, conceptual difficulties of the representation of assembly mem-
bership by spike rate were pointed out (VON DER MALSBURG 1981, 1986b). The notion
was developed that, alternatively, assembly membership could be expressed in the tem-
poral organization of spiking activity (VON DER MALSBURG 1981, ABELES 1982 a, VON
DER MALSBURG 1986a, GERSTEIN et al. 1989, PALM 1990, ABELES 1991, SINGER
1993). Consequently, neuronal processing should be reflected in dynamical changes of
spike time correlation. Dynamic modulations of spike correlation at various scales of
precision have, in fact, been observed in different cortical areas: visual (ECKHORN et al.
1988, GRrAY et al. 1989, for reviews see ENGEL et al. 1992, AERTSEN et al. 1993, SINGER
and GrAY 1995, ROELFSEMA et al. 1996, SINGER et al. 1997, SINGER 1999), auditory
(AHISSAR et al. 1992, EGGERMONT 1992, DECHARMS et al. 1996, SAKURAI 1996), soma-
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Fig. 1 Cell assemblies. (A) Sketch of a piece of the cortical network containing two cell assemblies. The
neurons composing the network are indicated by filled circles (black, gray and hatched), the thin lines
sketch the connectivity between the neurons. One assembly is composed of the neurons marked in dark
gray, the other by the neurons marked in light gray. Hatched disks mark neurons that are members of both
assemblies. (B) Sketch of the spiking activity of N simultaneously recorded neurons. Part of the recorded
neurons are members of the indicated assemblies in (A), others are “background” neurons. During the obser-
vation interval both assemblies are activated twice, e. g., by a sequence of two different stimuli presented
shortly one after the other. Assembly 1 (neurons marked black) is activated first by activity entering the net
through the dark gray and hatched neurons on the lower left and is propagating through the subnet compos-
ing that assembly. The activation of the assembly is visible by the synchronous activity of recorded member
neurons (here numbered as 4, 6, 7). Later the other assembly (neurons marked light gray) is activated by a
stimulus entering the network through the gray and hatched neurons on the upper left, expressed by the syn-
chronous spiking activity of recorded member neurons (2,3,6,N-1,N). Interestingly, one neuron (6, corre-
sponding to the hatched neuron on the left) exhibits synchronous activity with neurons of both assemblies. It
multiplexes its activity in time while being member of different assemblies. The neuron’s assembly member-
ship is expressed by the partner neurons with which it exhibits synchronous activity.
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to-sensory (NICOLELIS et al. 1995, LAUBACH et al. 2000, STEINMETZ et al. 2000), motor
(MurtHY and FETZ 1992, SANES and DONOGHUE 1993, RIEHLE et al. 1997, HaTsopou-
LOS et al. 1998), and frontal (AERTSEN et al. 1991, ABELES et al. 1993, VAADIA et al.
1995, Prur et al. 1998, GRUN et al. 2002 b).

The correlations observed in neuronal data cannot be attributed to the underlying
network structure alone (AERTSEN et al. 1989, 1991). Parameter changes seem to be
able to drive the network into different dynamical regimes or activate different sub-net-
works. Thus, it was proposed that depending on the behavioral demand neurons organ-
ize dynamically into functional groups, which should be reflected in the temporal
structure of the spike activity of the neurons involved (sketched in Fig. 1). In order to
test this hypothesis and to detect the activity of cell assemblies and their interactions,
neuronal activity has to be analyzed for correlation structures. For the analysis of spike
coincidence patterns in such simultaneously recorded spike trains we developed the
“unitary event” analysis (GRUN 1996, GRUN et al. 2002 a, b). The method allows to
uncover excessive coincident spike events among simultaneously recorded neurons.
Such conspicuous coincidences are referred to as “unitary events”, and are defined as
those joint spike constellations that occur significantly more often than expected by
chance. The functional significance of unitary events was tested by investigating their
occurrence and composition in relation to sensory stimuli and behavioral events. We
were able to define a measure, the joint-surprise, that indicates the presence of an un-
expected spike constellation in a time resolved manner. Conspicuous spike patterns can
be marked at the point of their occurrence in time. The result is a visualization of the
correlation structure of the data as a function of time. The appearance and disappear-
ance of spike patterns can be compared with the stages of the experimental protocol.
The time course of pattern occurrence can also be compared to the time course of
other time varying features of the data, such as the spike rate. Recordings from awake
animals performing a behavioral task enable the experimenter to observe the correlation
structure while the neurons are carrying out computational tasks. Various time scales
and their interactions are made explicit in the mathematical formulation of unitary
event analysis. In this contribution, we use unitary event analysis, which will be intro-
duced in the next section (Section 2), as a framework to discuss the multiple time
scales that enter our analysis and may be relevant for cortical processing. Section 3
discusses how temporal coordination is distinguished from changes in spike rate. The
following section (Section 4) analyzes the time scale of synchronous spiking in cortical
data. Section 5 demonstrates that the time courses of rate modulation are often indepen-
dent from the modulation of fine temporal coordination.

2. Detection and Statistical Evaluation of Spike Coincidences:
Unitary Event Analysis

We developed a method that detects the presence of conspicuous spike coincidences and
evaluates their statistical significance (GRUN 1996, GRUN et al. 2002 a, b). Briefly, the
detection algorithm works as follows: The simultaneous observation of spiking events
from N neurons can be described mathematically by the joint process, composed of N
parallel point processes. By appropriate binning, this can be transformed to an N-fold
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binary process, the statistics of which are described by the set of activity vectors reflect-
ing the various (0,1)-constellations that occurred across the recorded neurons (Fig. 2 A).
Under the null-hypothesis of independently firing neurons, the expected number of oc-
currences of any activity vector and its probability distribution can be calculated analyt-
ically on the basis of the single neuron firing rates. The expected joint-probability of an
activity vector is given (assuming statistical independence) by the product of the corre-
sponding firing and non-firing probabilities.

To test the significance of coincident events we developed a new statistical measure:
the “joint-p-value” ¥. For any particular spike activity vector, this joint-p-value meas-
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Fig.2 Unitary Event Analysis. (A) Representation of N parallel neuronal spike trains as binary processes.
Each horizontal row, consisting of 0’s and 1°s, represents a realization of a single process v; observed for
T time steps. The 1’s mark the occurrences of spike events. The joint activity across the processes at each in-
stant in time can be expressed by a vector v(t), as indicated for one example. The empirical firing probabil-
ity per bin p; of each single process is evaluated as the marginal probability: the number of spikes in the ob-
servation time interval, divided by the number of time steps. (B) Distribution of joint-spike events for
significance estimation. The black shaded area under the Poisson distribution (with 7! = 15) ranging from
n“"? =25 to o, indicates the joint-p-value ¥ as the cumulative probability to get n“"” coincidences or an
even larger number. For this particular example, the joint-p-value equals 0.0112. C. The joint-surprise S is
as a logarithmic scaling function of the joint-p-value. The transformation converts significant joint-p-values
to positive numbers, non-significant values to values around 0, and large joint-p-values to negative numbers,
indicating significant lack of coincident events. The value of the joint-surprise corresponding to the joint-p-
value in the example in (B) is S = 1.9459. Figure modified after GRON et al. 2002 a.
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ures the cumulative probability of observing the actual number of coincidences (or an
even larger one) by chance (Fig. 2 B):

00
g/(nemp|npred) — Z l//(l’l, npred). [1]
e
In order to enhance visual resolution at the relevant low-probability values of ¥ for ex-
cessive or lacking coincidences we transform ¥ to a logarithmic scale thereby deriving
the joint-surprise measure (Fig. 2 C):

S =log [2]
a measure closely related to the surprise measure defined by PALM (1981). Thus, we can
calculate for a stationary data set the significance of any joint-activity constellation
across the N neurons and identify those neurons that exhibit significant (e. g. at a signifi-
cance level of 5%: S(¥) = S(a = 0.05)) synchronous activity presumably indicating sig-
natures of assembly activity (for details see GRUN et al. 2002 a).

3. Temporal Precision of Coincident Events

The time resolution of data acquisition in extracellular spike recordings is typically 1 ms
or better. To define a coincident event implies to know the time scale on which spike
events are coincident. Since spikes do not code information by amplitude or shape of the
spike we can assume the duration of a spike signal (1-2 ms) as a lower bound. During the
last decade there was an intensive debate if neurons could operate on a time scale smaller
than a few tens of ms, since neurons were considered to be “noisy” and as units that inte-
grate the spikes over a relatively large time window before emitting a spike. This view is
supported by the relatively long time constants of the membrane potential (tens of ms).
Note, however, that the degree of this temporal noise has long been questioned (e. g.
ABELES 1982 a) and is still under debate (e. g. BRYANT and SEGUNDO 1976, MAINEN and
SEINOWSKI 1995, SHADLEN and NEWSOME 1998, DIESMANN et al. 1999). There is experi-
mental evidence from cross-correlation-, JPST- and, particularly, from spike pattern ana-
lysis that the timing accuracy of spiking events which might be relevant for brain function
can be as precise as a few ms (ABELES et al. 1993, Nowak et al. 1995, RIEHLE et al. 1997).
Similar suggestions come from modeling studies (DIESMANN et al. 1999).

To detect the relevant time scale of synchronous events in experimental data, we sys-
tematically vary the allowed temporal width to detect coincident events and evaluate
their significance assuming independence. A straight forward approach to allow synchro-
nous events on a less precise time scale than the time resolution of the data is to section
the observation interval into short disjunct time slices (“bins”) and consider spikes from
different neurons as coincident if they occur within such a time bin. Although coincident
spiking events can reliably be detected by using such a discretized process (disjunct bin-
ning), the method loses sensitivity for higher temporal jitter of the coincident events
(GRUN et al. 1999). This is mainly due to the nonlinear effect of binning and clipping
of the single spike trains, on the one hand, and the application of the same binning grid
over multiple spike trains, on the other.
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As an alternative approach, we worked out the “multiple shift” method that overcomes
the need for binning, and thereby treats the data on their (original) high time resolution
(GRUN et al. 1999). Technically, coincidences are detected by shifting the spike trains
against each other over the range of allowed coincidence width and integrating the
number of exact coincidences (on the time resolution of the data) over all shifts. In
calibration studies we analyzed the sensitivity of the method and the reliability to de-
tect near-coincidences with a given underlying coincidence width. Therefore we simu-
lated data sets in which independent spike trains with a given background rate were
“injected” with coincident spikes of a given coincidence width (tolerance) into both
trains. For a given data set we varied the analysis coincidence width systematically
and evaluated the significance for each coincidence width. It turned out that the signif-
icance is maximal, if the analysis bin width corresponds to the underlying jitter (see
Fig. 3A).

Thus, we used the method to estimate the underlying “jitter” in experimental data.
Neuronal data were taken from a pair of simultaneously recorded neurons (time resolu-
tion: h = 1 ms) from the primary motor cortex of a behaving monkey involved in a visuo-
manual pointing task (see BASTIAN et al. 1998, GRAMMONT and RIEHLE 1999 for experi-
mental details). The results of the analyses of the experimental data using various shift
widths (b) are shown in Figure 3 B (solid lines). The joint-surprise function, however,
shows a clear peak at b’ = 6 ms. In Figure 3 B (top) the experimental results are com-
pared to control surrogate data (shown in gray), in which no coincidences were in-
jected. The rates for the simulations were set to correspond to the marginal firing rates
of the neuronal data. Simulation results of 30 repetitions (each consisting of 33 trials) are
shown as gray bands. The experimental results clearly deviate from the simulation re-
sults, indicating that neuronal spike trains do not correspond to the assumption of inde-
pendence.

As discussed above, according to our model the maximum of S in the experimental
data indicates the coincidence width of the underlying data as s =b’, i.e. here 6 ms.
Next, surrogate data with injected coincidences were compared to the experimental re-
sults. We extracted the coincidence width for the simulation at the maximum of the joint-
surprise (here: 6 ms). The firing probabilities of the neurons, measured as the marginal
probabilities, were assumed to be a measure for the sum of coincident and background
activity. Using the measured marginal probabilites for the two neurons, we obtained es-
timates for the probability for coincident firing and the “uncorrelated” background firing
probabilities. Figure 3 B (bottom) illustrates the comparison of experimental and simu-
lated data using the derived parameters. The experimentally derived joint-surprise func-
tion shows basically the same curve as obtained from the surrogate data. The experimen-
tal curve lies within the range of about 1 std of the simulated data (dark gray band),
indicating that our model predictions are consistent with the experimental data.

4. Dynamics of Synchronous Spiking Events
In order to account for non-stationarities in the discharge rates of the observed neurons,
modulations in spike rates and coincidence rates are determined on the basis of short

data segments by sliding a fixed time window (typically 100 ms wide) along the data in

Nova Acta Leopoldina NF 88, Nr. 332, S. 189-206 195



Sonja Griin, Alexa Riehle, Ad Aertsen, and Markus Diesmann

0 5 10 15 20
s=b’ b’ (ms)

Fig. 3 Temporal precision of coincident activity. (A) The detectability of coincident events and their tem-
poral jitter is illustrated for two parallel processes, composed of two independent contributions: background
(Poisson processes) and coincident activity with a given homogeneous temporal jitter. For various
coincidence widths (from s==%1 ... 10) the joint-surprise (S) is calculated for increasing analysis widths
(b’==%0...20). For a given temporal jitter s, the joint-surprise as a function of b’ (gray curves) exhibits a
maximum at the corresponding analysis jitter (s = b") (marked by filled black circles). For s = * 1 the maxi-
mum of S equals 11.6 at b’ = 1 (not shown here). The line at S =2 marks the significance level of 1%,
i.e. S(o=0.01). Data sets were assumed to have the parameters: duration in time as the experimental data
shown in (B; 33 trials of 800 ms) with a time resolution of h = 1 ms; background firing probability for both
neurons: p, = 0.03, coincidence firing probability of p. = 0.0029. (B) Temporal precision of neuronal spike
trains and its comparison with simulated processes. The analysis results expressed by the joint-surprise (S)
for increasing shift width b’ of two simultaneously recorded neurons are shown and compared to simulated
data. The top graph shows, for control purposes, the simulation experiment performed without injected coin-
cidences, firing probabilities correspond to the measured marginals of the neurons (p; = 0.0321, p, =
0.0359). In the bottom graph, coincidences were injected with a coincidence width of s ==+ 6 ms, corre-
sponding to the analysis bin width b" at the maximum of the joint-surprise. The coincidence probability
(p. =0.0029) and the background probabilities of the two neurons (p,; =0.0291 and p,, = 0.0329) were
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steps of the coincidence bin width. This timing segmentation is applied to each trial, and
the data of corresponding segments in all trials are then analyzed as one quasi-stationary
data set, using the appropriate rate approximation. Besides the effect that this approach
corrects for non-stationary rate variation in time, it also allows us to analyze synchronous
activity and its potential modulation as a function of time. Excess coincident activity
may occur in a short interval, “triggered” by some external or internal event. When the
neuronal processes are observed over repeated trials, the coincident activity appears to
some degree locked to certain points in time. We have shown in a modeling study
(GRUN 1996) that loose locking of synchronous activity, e. g. to trial onset, does not con-
tradict precise temporal coordination of the spiking activity related to the assembly ac-
tivity. Loose locking rather reflects a loose onset of the correspondingly triggered assem-
bly activity. For optimal detection of unitary events using the sliding window procedure,
the width of the analysis window has to be adjusted to the temporal spread of the syn-
chronous events. As worked out in detail in GRUN et al. (2002 b), the shape of the joint-
surprise function can indicate the optimal window width, such that the window width can
be adjusted accordingly. Further details and calibration of the unitary event analysis
technique are described in GRUN (1996) and GRUN et al. (2002 b). Recent extensions of
the approach are discussed in Roy et al. (2000), PAurLuis and BAKER (2000), GUTIG et al.
(2002). Note that the time window fulfills two different purposes: rate estimation and
obtaining a large enough coincidence count for significance testing. In general, both
tasks may require windows of different size. Even if the spike rates are known a limited
number of trials require a certain window size.

4.1 Temporal Modulation of Synchronous Activity

We tested the hypothesis that such precise synchronization of individual action potentials
among groups of neurons in the monkey motor cortex is involved in dynamically organ-
izing the cortical network during the planning and execution of voluntary movements
(RIEHLE et al. 1997). We found that simultaneously recorded activities of neurons in
monkey primary motor cortex indeed exhibited context-dependent, rapid changes in the
patterns of coincident action potentials during performance of a delayed-pointing task.
Accurate spike synchronization occurred in relation to external events (visual stimuli,
hand movements), commonly accompanied by discharge rate modulations, however
without precise time-locking of the spikes to these external events. Accurate spike syn-
chronization also occurred in relation to purely internal events (stimulus expectancy;
Fig. 4), where firing rate modulations were distinctly absent. These findings indicate
that internally generated synchronization of individual spike discharges may subserve
the cortical organization of cognitive motor processes. The clear correlation of spike co-

calculated based on the model as assumed in (A) (see for details GRUN et al. 1999). Results from simula-
tions are shown as gray bands. The width of the light gray band represents 95 %, the dark gray band 70 % of
30 repetitions of the simulation experiments. Each simulation had the same duration in time as the experi-
mental data (33 trials of 800 ms) with a time resolution of h = 1 ms. In the upper panel, the light gray band
(representing 95 % of the simulation experiments) is well below the threshold for significance of 1%, i.e.
S (0.01) = 2, demonstrating the low probability of the significance measure to generate “false alarms”. Fig-
ure modified after GRUN et al. 1999.
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Fig.4 Temporal modulation of synchronous activity. Unitary event analysis of the spiking activity of two
simultaneously recorded single neurons from motor cortex of awake behaving monkey. The monkey was in-
volved in a delayed pointing task, where the duration of the preparation period (after the preparatory signal
(PS) up to the reaction signal (RS)) for the movement was selected randomly from 4 possible durations (PP;
600, 900, 1200, 1500 ms) from trial to trial. The 36 trials with longest PP duration (1500 ms) were pooled in
this example. Thus the monkey could expect the RS to occur at three successive moments (ES1, ES2, ES3)
before it actually occurred at RS. Results of the unitary event analysis in sliding windows of 100 ms over a
time interval of 2100 ms, starting at 300 ms before PP and lasting until 300 ms after PS. (A) Conventional
raster displays of spike discharges of two neurons. Each dot represents an action potential, and each row of
action potentials depicts the spiking activity in a single trial. (B) Comparison of measured and expected co-
incidence rates. The measured coincidence rate (black curve) was derived the same way as the firing rates
by sliding a box car of 100 ms in steps of 1 ms over the data. Coincident events were detected with an analy-
sis width of b’ =+ 2 ms. The expected coincidence rate (gray curve), based on the null-hypothesis of inde-
pendent firing was calculated as the product of the individual firing rates (see for details GRUN et al.
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incidences with stimuli and behavioral events underlines their functional relevance (FETZ
1997, RIEHLE et al. 1997). Taken together, these findings demonstrate the existence of
precise synchronization of individual spike discharges among selected groups of neu-
rons in the motor cortex. This synchronization is associated with distinct phases in the
planning and execution of voluntary movements, indicating that it indeed plays a func-
tional role. Moreover, these findings suggest that under behavioral conditions as investi-
gated in this study, the brain uses different strategies in different contextual situations: In
order to process a purely cognitive, i.e. an internal and behaviorally relevant event, neu-
rons preferentially synchronize their spike occurrences without changing, at the same
time, their firing rates. By contrast, when processing an external, behaviorally relevant
event, neurons tend to synchronize their spikes and modulate their firing rates at the
same time. Thus, precise synchronization of spike events and modulation of discharge
rate may serve different and complementary functions. They act in conjunction at some
times, not at others, depending on the behavioral context (RIEHLE et al. 1997).

4.2 Task Dependent Composition of Coincident Spiking Activity

In the second experimental study we discuss, Rhesus monkeys were trained in a “de-
layed localization” paradigm with two basic tasks (localizing and non-localizing, an
example of the latter is shown in Figure 5). In both tasks, the monkey receives a se-
quence of two stimuli (visual and auditory) out of five possible locations. After a wait-
ing period, a “GO” signal instructed the monkey to move its arm in the direction of the
stimulus relevant in the current trial. In the localizing task, the relevant spatial cue was
selected by the color of the GO signal. In the non-localizing task, an indicator light
between blocks of trials informed the monkey about the reinforced direction for arm
movement. Thus, in the latter case, the animal had to ignore the spatial cues given
before the GO signal. In the behavioral task analyzed here (non-localizing), neither
the spatial cues before the GO signal nor the GO signal itself could be used to deter-
mine the correct behavioral response (see VAADIA et al. 1989, AERTSEN et al. 1991,
Vaapia et al. 1991 for further details). The activity of several (up to 16) neurons was
recorded simultaneously in the frontal cortex by using six microelectrodes during task
performance. In each recording session, the microelectrodes were inserted into the cor-
tex with inter-electrode distances of 300—600 pum. Isolation of single units was aided by
six spike sorters that could isolate activity of 2-3 single units, based on their spike
shape (ABELES and GOLDSTEIN 1977). The spike sorting procedure introduced a dead-
time of 600 ps for the spike detection.

Using data from this study, we found that coincident activity in the frontal cortex can
be specific to movement direction. We parsed the data of five neurons according to the

1999). (C) For each time window, the joint-surprise value was computed by comparing the empirical num-
ber of coincidences with the expected number (see Fig. 2). (D) Whenever the joint-surprise exceeded a fixed
threshold (here: S(av = 0.05)) this defined an epoch with significantly more coincidences than expected by
chance. These precise coincidences were marked as unitary events and are indicated by squares in the raster
displays. Reprinted (excerpted) with permission from RIEHLE et al. Science 278, 1950-1953 (1997). Copy-
right 1997 American Association for the Advancement of Science.
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Fig. 5 Task dependence of the composition of coincident spiking activity. The dot displays show the spik-
ing activity of five simultaneously recorded neurons (labeled 1 to 5) from the frontal cortex of a monkey in-
volved in a delayed localization task (28 trials). (A) and (B) represent two different behavioral conditions:
(A) movement to the left, (B) movement to the front. Unitary event analysis was performed in sliding win-
dows of 60 ms, and with a significance level of oo = 0.01. Coincident events were detected in disjunct bins
with a bin width of 3 ms. Data were taken from segments starting 500 ms before and ending 700 ms after
the GO signal (vertical line at 0 ms). Average times of behavioral events (monkey leaves central key, mon-
key hits the target) are indicated by vertical lines. In (A) the monkey leaves the central key at 329 ms and
hits the target at 557 ms after the GO signal, in (B) leave at 364 ms, and hit target at 562 ms. Unitary events
(marked by squares) occur at about the time when the monkey leaves the center key, i. e. at different times in
the two conditions. The composition of the correlated spiking activity differs in the two behavioral condi-
tions: related to a movement to the left neuron 1 and 4 are correlated, and related to the movement to the
front neuron 1 and 5 are correlated., i.e., neuron 1 seems to switch the partner neuron depending on the be-
havioral context. Figure modified after GRUN et al. (2002 b).

movement direction, and analyzed each of these sub-sets separately. Figure 5 shows the
analysis results for two movement directions (A: to the left; B: to the front); for the three
other movement directions there was no significant activity. For each of the two move-
ment directions, there is mainly one cluster of unitary events (besides some sparsely
spread individual ones), occurring at the onset of the movement. The clusters of unitary
events differ, however, both in their neuronal composition and in their timing. During
movement to the left, significant coincidences occur between neurons 1 and 4, for move-
ment to the front they occur between neurons 1 and 5. The timing of the unitary events
differs. Both occur shortly after the monkey left the center key (equivalent to reaction
time), which differs for the two movement directions (mean reaction time indicated by
a line in A: 329 ms after the GO signal, in B: 364 ms after the GO-signal). Thus, unitary
events appear to be locked better to the behavioral event than to the external event (GO).
The analysis of the same five neurons during the localizing task, where the color of the
GO-signal contained the information about the reinforced type of stimulus (data not
shown) did not reveal any indications for unitary events related to movement direction.
Note, that neuron 1 is participating in significant coincident activity in both movement

200 Nova Acta Leopoldina NF 88, Nr. 332, S. 189-206



Temporal Scales of Cortical Interactions

directions, however with another coincidence partner in each. This is indicative of a
common membership of neuron 1 in two different cell assemblies, one of which is acti-
vated depending on the movement direction.

4.3 Changes of Temporal Precision as a Function of Time

In order to study the temporal aspects of neuronal activity during preparatory processes
for arm movements, Rhesus monkeys were trained to perform a multi-directional point-
ing task (RIEHLE et al. 2000). The animal sat in a primate chair in front of a vertical

Coincidence
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time (ms)

Fig. 6 Temporal precision of coincident spiking events as a function of time. Two simultaneously recorded
neurons from a behaving monkey during performance of a delayed multi-directional pointing task. Record-
ing site was primary motor cortex. With the preparatory signal (PS) the monkey was provided with prior in-
formation about the target position (1 out of 6; here: movement direction 4) where he had to point at after
presentation of the response signal (RS). During the preparatory period (from PS to RS, fixed duration:
1000 ms) the monkey had to sit still, keep the initiating button pressed and the preparatory signal (illumi-
nated in green) was still on. As it turned red it indicated the response signal. The same spike trains were ana-
lyzed for varying coincidence widths ranging from b’ =+ 0 ... 20 ms (vertical). For each coincidence width,
the significance level (joint-surprise) was calculated separately. The gray code indicates the joint-surprise
values, ranging from —2.19 (white) over O (light gray) to 2.42 (black). For symmetry, values were clipped at
—2 and 2. The level of statistical significance was o = 0.05 for excess coincidences, which corresponds to
S =1.27, correspondingly for lacking coincidences S = —1.27. For calculation of the joint-surprise as a func-
tion of time, a sliding window of 100 ms was shifted along the spike trains in steps of 20 ms. Significant co-
incidences only occurred during the first half of the preparatory period with increasing precision, reaching
the strongest synchronicity value at 500 ms with a precision of 2—4 ms (black spot). Figure modified after
RIEHLE et al. 2000.
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panel on which seven touch sensitive light emitting diodes (LEDs) were mounted, one in
the center and six placed equidistantly on a circle around it. In each trial, two signals
were presented successively. The first, the preparatory signal (PS), provided prior infor-
mation about the target which had to be pointed after the occurrence of the second, the
response signal. First, the center target was lit and the animal had to press it for initiating
the trial. Then, after a fixed delay of 500 ms, the preparatory signal was presented by
illuminating one of the targets in green. After another delay (preparatory period), during
which the animal still had to continue to press the center target, the color of the periph-
eral target turned red. This served as a response signal (RS) requesting from the animal
to perform the movement to the indicated target. During performance of the task multi-
ple single neurons were recorded and analyzed using the unitary event analysis. For ana-
lysis of the time course and modulation of synchronous activity, the joint-surprise values
were obtained using the sliding window analysis. In order to observe the temporal preci-
sion of synchronous activity, and its potential change during the preparatory period, the
allowed temporal precision of synchronous events was varied using the multiple shifts
method (GRUN et al. 1999).

The analysis of the data revealed two main results. First, synchronous spiking activity
in motor cortex during preparation for action is not maintained at a significant level for
more than 100-200 ms. Periods of synchrony, however, may occur several times during
the trial, with a more or less regular (oscillatory) pattern. Second, for many pairs of neu-
rons, the temporal precision of synchronicity changes over time (comparable to the ex-
ample shown in Figure 6). If such changes occur, temporal precision typically increases
during the preparatory period to be highest towards its end. One possible interpretation is
that the increase of temporal precision of synchronous activity facilitates the efficiency
of the motor output.

5. Conclusions

We have shown for a number of experimental data sets that several time scales seem to
play a role in cortical processing. In order to detect unitary events, we differentiate rate
(typically estimated on a time scale of tens to hundreds of ms), and temporal coordina-
tion of spiking activity typically on a ms time scale. If synchronous activity occurs more
often than expected by chance given the rates, neurons are commonly involved in a fast
and active dynamic process.

The temporal precision of significant synchronous activity is in the range of some
few ms, an observation that was also found in spatio-temporal spike patterns or in
cross-correlation analysis (e.g. MUNK et al. 1995, Nowak et al. 1995, Prurt et al.
1998). Theoretical work, where the propagation of aperiodic synchronous spiking activ-
ity in neural networks is studied, show that the temporal precision of synchronous activ-
ity is a function of the rise time of the membrane potential (DIESMANN and AERTSEN
2001), which is in the range of a few ms (e. g. FETz et al. 1991). Other models explain
the occurrence of synchronous activity in recurrent networks of oscillators. More theore-
tical studies are required that help to make the link between the connectivity and activity
in the neuronal network. Both together define the functional connectivity, i.e. the rela-
tionship between neurons in terms of their activity, given the network structure.
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The distinction between rate and synchronous activity also depends on the definition of
the temporal precision of a synchronous event. If the “coincidence” width is rather in the
range of tens or hundreds of ms, one would speak about spike rate correlation or spike
count correlation. We found that there can be considerable rate covariation. However,
interestingly, rate covariation may occur simultaneously but independent from spike syn-
chronization (GRUN et al. 2003).

If the expected number of coincidences is estimated on the basis of rate averages
across non-stationary rates, the danger of falsely detecting coincident activity as signifi-
cant is enhanced (GRUN et al. 2002 b). Therefore, we introduced the sliding window pro-
cedure to account for the non-stationarity in firing rates of the neurons. Interestingly, this
procedure helped us to uncover another phenomenon, indicating the dynamics of compu-
tational processes in time. Unitary events occur mostly only in short time windows, and
are typically not constant throughout trial duration. They exhibit “loose locking” of syn-
chronous activity to a trigger event, which does not necessarily correspond to an external
behavioral trigger, but presumably rather to “internal” trigger events. Unitary events may
be locked to purely internal events, as, e.g., the expectation of a signal (RIEHLE et al.
1997). Thus the timing structure of the modulation of synchronous activity is a reflec-
tion of the behavioral design in the experiment. However, also the opposite may be
true: data from experiments in which no temporal structure is provided during the
preparatory period may also show modulation of synchronous activity (RIEHLE et al.
2000). In the context of the given experiment this could be interpreted as internal “re-
hearsal”.

Both time scales seem to be relevant for cortical processing. Measures derived for the
different temporal scales seem to indicate context specific and complementary processes
(RIEHLE et al. 1997). In the respective study we have shown, that in motor cortex inter-
nal processes seem to be reflected by synchronous activity on a fine temporal scale,
whereas stimulus-related unitary events are accompanied by rate changes. However, it
is not clear whether this can be generalized to all cortical areas. It is even suspected that
the closer to the periphery, the stronger the “locking” to the external changes.

Another prominent activity structure in the cortex are oscillatory features of the sig-
nals. Depending on the state of the brain (sleep or awake etc.) there are differing domi-
nant frequencies in mass signals like EEG or LPF. Single units do not obviously exhibit
the same oscillatory behavior, and the question arises where does the oscillatory signal
come about. There are studies that suggest (KORNER et al. 1999, SINGER 1999), that os-
cillations serve as a timing grid in order to structure the time axis to disentangle different
computational processes. Thus, synchronous activity would be limited by the oscillatory
period. We are currently studying the interaction of oscillatory activity and synchronous
activity.
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Development of Bipolar Deep Brain Stimulation
Techniques Based on Stochastic Phase Resetting

Peter A. Tass (Jiilich)

With 5 Figures

Abstract

This paper is devoted to the desynchronizing effects of bipolar stimuli on a synchronized cluster of globally
coupled phase oscillators. The bipolar pulses considered here are symmetrical and consist of a positive and a
negative monopolar pulse. A bipolar single pulse with the right intensity and duration desynchronizes a syn-
chronized cluster provided the stimulus is administered at a vulnerable initial phase of the cluster’s order pa-
rameter. A considerably more effective desynchronization is achieved with a bipolar double pulse consisting
of two qualitatively different bipolar pulses. The first bipolar pulse is stronger and resets the cluster, so that
the second bipolar pulse, which follows after a constant delay, hits the cluster in a vulnerable state and de-
synchronizes it. A bipolar double pulse desynchronizes the cluster independently of the cluster’s dynamical
state at the beginning of the stimulation. The dynamics of the order parameter during a bipolar single pulse
or a bipolar double pulse is different from the dynamics during a monopolar single pulse or a monopolar
double pulse. Nevertheless, concerning their desynchronizing effects the monopolar and the bipolar stimuli
are comparable, respectively. This is significant for applications where bipolar stimulation is required. For
example, in medicine and physiology charge-balanced stimulation is typically necessary in order to avoid
tissue damage. Based on the results presented here, demand-controlled bipolar double pulse stimulation is
suggested as a milder and more efficient therapy compared to the standard permanent high-frequency deep
brain stimulation in neurological patients.

Zusammenfassung

Im vorliegenden Artikel werden desynchronisierende Effekte bipolarer Stimuli auf synchronisierte Cluster
global gekoppelter Phasenoszillatoren untersucht. Die dabei betrachteten bipolaren Pulse sind symmetrisch
und bestehen aus einem positiven und einem negativen monopolaren Puls. Ein bipolarer Puls der richtigen
Intensitdt und Dauer desynchronisiert ein synchronisiertes Cluster, vorausgesetzt dieser Reiz wird in einer
vulnerablen Phase des Ordnungsparameters appliziert. Eine wesentlich effektivere Desynchronisation 148t
sich mit einem bipolaren Doppelpuls erzielen. Letzterer besteht aus zwei qualitativ unterschiedlichen Ein-
zelpulsen: Der erste bipolare Puls ist stdrker und fiihrt zu einem Reset, d. h. einem stereotypen Neustart, des
Clusters. Der zweite Puls wird mit einer konstanten Zeitverzogerung appliziert und trifft das Cluster verldf3-
lich in einem vulnerablen Zustand. Ein bipolarer Doppelpuls dieser Art entfaltet seine desynchronisierende
Wirkung unabhingig von den Anfangsbedingungen, also unabhidngig vom dynamischen Zustand des Clu-
sters zu Beginn der Stimulation. Die Dynamik des Ordnungsparameters wihrend eines bipolaren Einzelpul-
ses oder eines bipolaren Doppelpulses ist qualitativ von der Dynamik wéhrend eines monopolaren Einzel-
pulses oder eines monopolaren Doppelpulses verschieden. Dessen ungeachtet sind die bipolaren Reize
beziiglich ihrer desynchronisierenden Wirkung jeweils mit ihren monopolaren Pendants vergleichbar. Dies
ist fiir alle die Anwendungen relevant, bei denen bipolare Stimuli benotigt werden. Zum Beispiel in der Me-
dizin und in der Physiologie werden typischerweise Reize verwendet, deren Netto-Ladungseintrag in das
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Gewebe gleich Null ist. Aufbauend auf den hier vorgestellten theoretischen Ergebnissen wird eine bedarfs-
gesteuerte bipolare Doppelpuls-Tiefenhirnstimulation als mildere und effektivere Therapie und somit als Al-
ternative zur standardmifig verwendeten Hochfrequenz-Tiefenstimulation bei neurologischen Patienten vor-
geschlagen.

1. Introduction

Synchronization processes are abundant in physics (HAKEN 1983, PIkovsKy et al. 2001),
chemistry (Kuramoro 1984), biology (WINFREE 1980, GLASs and MACKEY 1988,
STERIADE et al. 1990, NEIMAN et al. 1999), and medicine (VOLKMANN et al. 1996, BERG-
MAN et al. 1998). Stimulation is a major experimental tool that is used for investigating
and manipulating dynamical processes (WINFREE 1980, HAKEN 1983, KuramoTO 1984,
GrAss and MACKEY 1988, STERIADE et al. 1990, VOLKMANN et al. 1996, BERGMAN et al.
1998, NEIMAN et al. 1999, Pikovsky et al. 2001). To study desynchronizing effects of
pulsatile stimuli, the concept of phase resetting (WINFREE 1980, GLASS and MACKEY
1988) was extended to populations of non-interacting (TASS 1996 a, b) and interacting
(Tass 1999, 2000) oscillators subjected to random forces. For this, limit cycle oscilla-
tors are approximated by phase oscillators (KurRaMOTO 1984), and desynchronization is
caused by stimuli that exclusively affect the phases of the oscillators.

A single pulse of the right intensity and duration desynchronizes a fully synchronized
cluster of oscillators if the pulse hits the cluster in a vulnerable phase range which corre-
sponds to only a small fraction (5% or even less) of a period of the oscillation (TAsS
1999). However, this is tricky to realize under noisy experimental conditions typically
encountered in biological systems. What makes single pulse stimulation even less prac-
ticable is that the correct stimulation parameters also depend on the extent of the syn-
chronization of a cluster: A weaker pulse has to be used to desynchronize a weakly syn-
chronized cluster, whereas a stronger pulse is necessary for the desynchronization of a
cluster that is in its fully synchronized state. Moreover, not only the strength (i.e. inten-
sity and duration) but also the critical phase at which a pulse has to be administered
crucially depends on the extent of synchronization of the cluster (Tass 1999, 2001 a).

For this reason, a double-pulse stimulation technique has been developed which
makes it possible to effectively desynchronize a cluster of phase oscillators independ-
ently of the cluster’s dynamic state at the beginning of the stimulation (Tass 2001 a, c).
The double pulse consists of two qualitatively different stimuli: The first, stronger pulse
resets the cluster, so that after the first pulse the cluster restarts in a stereotyped way. The
second, weaker pulse is administered after a fixed delay and hits the cluster in a vulner-
able state in order to cause a desynchronization. Instead of the first, strong pulse, alter-
natively, a high-frequency pulse train (Tass 2001 b) or a low-frequency pulse train (TAss
2002 a) can be used to reset the cluster (for a review see Tass 2002 b).

As yet, in all of these theoretical studies the effects of monopolar pulses were investi-
gated (Tass 1996 a, b, 1999, 2000, 2001 a, b, ¢, 2002 a, b). In the context of electrical stim-
ulation, a monopolar pulse corresponds to a pulsatile current injection via an electrode. In
applications to biological systems, however, it is often necessary to use charge-balanced
pulses which guarantee that on average the stimulated tissue is not charged, so that tissue
damage can be avoided (STERIADE et al. 1990, BENABID et al. 1991, BLoND et al. 1992). A
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charge-balanced stimulation is typically achieved either (i) by means of capacitor driven
electronic circuits which control the stimulation in a way that after a monopolar pulse the
injected charge smoothly flows back, or (ii) by means of bipolar pulses, which consist of
two opposite monopolar pulses during which on average there is no net current flow
(STERIADE et al. 1990, BENABID et al. 1991, BLOND et al. 1992).

This article is devoted to the desynchronizing effects of bipolar single pulse and bi-
polar double pulse stimulation on a cluster of globally coupled phase oscillators in the
presence of noise. The transient dynamics occurring during administration of the bipolar
stimuli are compared with the transients related to the monopolar variants. Finally, it will
be discussed how to use the results presented here for the model-based development of
demand-controlled deep brain stimulation techniques, which essentially require the use
of charge-balanced stimuli. The results presented in this article have been published re-
cently in Tass (2002 c).

2. Model

Along the lines of a first approximation the dynamics of a population of neurons can be
modeled by means of a network of phase oscillators (KURAMOTO 1984, ERMENTROUT and
KopPeELL 1991, GRANNAN et al. 1993, HANSEL et al. 1993). This approach was exten-
sively used, in particular, for investigating spontaneous synchronization processes in
populations of oscillatory neurons (Kuramoro 1984, ERMENTROUT and KoPELL 1991,
GRANNAN et al. 1993, HANSEL et al. 1993). To study stimulus-induced transient dy-
namics we consider a cluster of coupled phase oscillators subjected to a stimulus S and
to random forces, which is governed by the Langevin equation

d
-0+ ZF — ) + Fi(0) (1]

where y/; denotes the phase of the jth oscillator, i.e. the jth model neuron (Tass 1999).
For the sake of simplicity all oscillators are assumed to have the same eigenfrequency:

= O. The global coupling is a 2z periodic function. For the time being we consider a
simple sine coupling of the form

I'(y;—y) =—K sin(y; — wy) [2]

where K is a nonnegative coupling constant. This type of coupling is sufficient to explain
the basic desynchronization mechanism employed by the bipolar stimulation technique
suggested here. The impact of both, cosine couplings like cos(y; — ;) and coupling
terms of second and higher order such as sin[2(y; — wy)], sin[3(y; — w;)] has already
been analyzed in detail in the context of monopolar stimulation techniques (TAsS 1999,
2001 ¢) and will be discussed below.

The impact of an electrical stimulus on a single neuron depends on the phase of the
neuron at which the stimulus is administered (BEST 1979, GUTTMAN et al. 1980). Accord-
ingly, the stimulus is modeled by a 27 periodic, explicitly time independent function
S(y;) = S(y; + 2m). First, we assume that the stimulus is of lowest order and defined by

S(yy) =1 cos(y;) 3]
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where [ is a constant intensity parameter. The effect of more complex stimuli S, e.g.,
containing higher order terms like cos(2y;) and sin(2y;), has already been investigated
in monopolar stimulation techniques (Tass 1999, 2001 c¢) and will be discussed below.
Administration of a monopolar single pulse is modeled by

X(1) = 1 if stimulus is on at time 7, X(¢) = 0 if stimulus is off at time ¢ [4]

(Fig. 1A).

In contrast, a symmetrical bipolar single pulse consists of a positive monopolar single
pulse and a directly following negative monopolar single pulse, which will briefly be
denoted as positive and negative pulse below (Fig. 1 B). The parameters of the positive
and the negative pulse are identical with respect to all parameters except for the sign of
X. In particular, positive and negative pulses have identical intensity / and duration. The
duration of the positive and the negative pulse will be denoted as 772, so that the duration
of the bipolar single pulse is given by 7. Accordingly, the administration of a symmetri-
cal bipolar single pulse is modeled by

X(t) = 1 if positive pulse is on at time 7,
X(t) = -1 if negative pulse is on at time #, [5]

X(1) = 0 if stimulus is off at time .

A B
1 1
et OJI— < 0
-1 -1
=1 1] 1 2 3 -1 0 1 2 3
Time [arb. units] Time [arb. units]
C 1 D 1
;,‘: OM— ;(: 0
-1 -1
-1 0 1 2 3 -1 0 1 2 3
Time [arb. units] Time [arb. units]

Fig. 1 Time course of X from Equation [4] and Equation [5] during a monopolar single pulse (A) (see
Equation [4]), during a symmetrical bipolar single pulse (B) (see Equation [5]), during a monopolar double
pulse (C) (see Equation [4]), and during a symmetrical bipolar double pulse (D) (see Equation [5]). A sym-
metrical bipolar single pulse consists of a positive and a directly following negative single pulse (B). The
positive and the negative pulse are identical with respect to all parameters except for the sign of X. A sym-
metrical double pulse consists of two symmetrical bipolar single pulses (D): The first bipolar single pulse is
stronger (i.e. it is longer and has a higher intensity / from Equation [3] and resets the cluster. The second
bipolar single pulse follows after a constant delay, is weaker and desynchronizes the cluster by hitting it in a
vulnerable state.
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In an experimental application a symmetrical bipolar single pulse would guarantee a
charge-balanced stimulation. The random forces F(t) are modeled by Gaussian white
noise which obeys (F;(t)) = 0 and (F;(t) Fi(t')) = Doyd(t — t') with constant noise am-
plitude D.

To study the dynamics of Equation [1] we first derive the corresponding Fokker-
Planck equation which is an evolution equation for the probability density f({w}, 1),
where {} stands for the vector (yy, ... ,wx). f{w1}, 1) dy, ... dyy gives the probabil-
ity of finding the oscillators’ phases in the intervals [y, Wy + dy,]. In order to simplify
the analysis we turn to a more macroscopic level of description by introducing the aver-
age number density n(y, f) according to

n(y.t) = ' ({wi}: ) = / / “dy.... dyyrl ({w): ZLOEN

N
where the number density is defined by n'({y,}; ) = %{Zé(t// — ;) (KuramoTO
k=1

1984). The probability density f({w}, t) provides us with information concerning the
phase of each single oscillator. In contrast, n(y, ) tells us how many oscillators of the
whole population most probably have phase y at time .

With a little calculation we finally obtain the evolution equation for the average num-
ber density

an((;/:,t) _ _% {n(l//,t) /Ozndy/l“(y/ -y n(ll/vf)}

21’1
—%n(t//, ) X(1) S(y) — Q%n(% g+ 22w

(7]

which holds for large N (Tass 1999). For the numerical investigation the Fourier trans-
formed model equation [7] was integrated with a 4th order Runge-Kutta algorithm with a
time step of 0.0001, where Fourier modes with wave numbers |kl = 200 were taken into
account. For a detailed analytical and numerical investigation of Equation [7] I refer to
Tass (1999).

3. Spontaneously Emerging Synchrony

The time-dependent extent of in-phase synchronization is quantified with

2n
2() = R explipln)] = | nty.0)expliv) du 5
where R () and ¢(¢) are the real amplitude and the real phase of Z, respzectively (A1ZAWA

1976, KuramoTo 1984). Because of the normalization condition / n(y,t) dy =1,
0

the amplitude fulfills O = R(¢) = 1 for all times z. Perfect in-phase synchronization corre-
sponds to R =1, whereas an incoherent state, given by n(y, f) = 1/(2n), is related to
R =0. Z(t) corresponds to the center of mass of n(y, f) exp(iy), the average number
density circularly aligned in the Gaussian plane (Fig. 2).
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To study the impact of stimulation, first, the cluster’s behavior without stimulation (i. e.
X(t) =0 in Equation [4] and Equation [5]) has to be clarified. Let us assume that the
coupling is given by Equation [2]. Noisy in-phase synchronization emerges out of the
incoherent state n(y, t) = 1/(2x) due to a decrease of the noise amplitude D (KURAMOTO
1984) or, analogously, because of an increase of the coupling strength (Tass 1999).
When K exceeds its critical value K" = D, Z from Equation [8] becomes an order param-
eter (HAKEN 1983) which governs the dynamics of the other, infinitely many stable
modes (i.e. frequency components) on the center manifold. In this way a stable limit
cycle Z(r) = Yexpli(2 + Q') t} evolves for K> D, where Y is a complex constant, and
Q' is a real frequency shift term that depends on model parameters and vanishes if the
coupling /" contains no cosine terms, as in Equations [2] (Tass 1999).

The cluster’s collective dynamics will not only be visualized with the order parameter
Z, but also by considering the collective firing. A single firing/bursting model neuron
fires/bursts whenever its phase vanishes (modulo 27). Accordingly, the cluster’s collec-
tive firing is given by the firing density

p(1) =n(0, 1) [9]

which corresponds to quantities registered in neurophysiological experiments such as
multiunit activity (MUA), local field potentials (LFP), and magnetic or electric fields
measured with magnetoencephalography (MEG) or electroencephalography (EEG).

4. Single Pulse

4.1 Monopolar Single Pulse

Let us first consider the cluster’s dynamics during a single monopolar pulse (TAss
1996 a, Tass 1999). During the monopolar pulse X(¢) = I, and S from Equation [3] is
constant in time. If the stimulus § is sufficiently strong (i.e., its intensity parameter / is
large enough) with respect to the coupling strength, n(y, f) tends to a stationary density
n*" () for t — . The latter is the attractor of Equation [7], independently of the initial
state n(y, 0) at which the stimulation starts (TAss 1999). Correspondingly, the order
parameter Z from Equation [8] is attracted by

2n
Zstal‘ _/0 nslat(l//) eXp(ll//) d(// [10]

where tp and 7z stand for the time of stimulus onset and stimulus end, and ¢ = ¢(tp)
denotes the initial phase at which the stimulus is administered. In Figure 2 A the collec-
tive dynamics of the cluster is visualized by plotting the trajectory of Z in the Gaussian
plane, where f3 is varied within one cycle [0, 2x]. A desynchronized state corresponds to
Z = 0. Thus, to desynchronize the synchronized cluster, the single pulse has to be admin-
istered at a critical (vulnerable) initial phase and it has to be turned off as soon as Z
reaches the origin of the Gaussian plane (Fig. 2B). The desynchronized state is un-
stable. Therefore after the desynchronizing stimulation Z spirals back to its stable limit
cycle, so that the cluster becomes synchronized again (Fig. 2 C).
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Fig. 2 Trajectory of the order parameter Z from Equation [8] in the Gaussian plane during and after a mono-
polar single pulse [(A)—(C)] and during a bipolar single pulse [(D), (E)]. In (A)—(E) the unit circle indicates
the maximal range of IZI monopolar single pulse: (A) Series of identical stimuli with X(r) S(y) = I cos
(with I =7) administered at different initial phases fp in the stable synchronized state (‘0’). Z approaches its
attractor Z3“" from Equation [10] for # — oo. Only the stimulus administered at the vulnerable initial phase
(‘@®@’) moves Z through the origin. Trajectory of Z before and during (B) and after (C) a desynchronizing
monopolar single pulse (parameters as in A): (B) After running on its stable limit cycle (inner circle) in coun-
terclockwise direction, Z is moved by the pulse into the origin (Z = 0). Stimulation starts at ‘0’ and ends in
‘@’. (C) After the stimulation the cluster spontaneously spirals back to its stable limit cycle. Symmetrical bi-
polar single pulse: (D) Series of identical negative pulses with X(#) S(w) = —I cos y (with I = 7) administered
at different initial phases ¢p in the stable synchronized state (‘o). For t — oo Z approaches its attractor Z%.
Only the trajectory starting in ‘@’ runs through the origin. (E) Before the bipolar stimulation Z runs on its
stable limit cycle (inner circle) in counterclockwise direction. The positive pulse starts in (‘0’) and moves Z
halfway towards the attractor Z}' belonging to the positive pulse shown in (A), so that at the end of the posi-
tive pulse Z is located in ‘[]°. The directly following negative pulse starts in ‘[ ]’ and moves Z towards the at-
tractor Z** of the negative pulse (D), so that at the end of the negative pulse Z is located in the origin of the
Gaussian plane (‘@’). (F) The ratio r = R(tg)/R(tg) from Equation [13] is calculated for a series of stimula-
tions where the normalized phase and amplitude error £, and E7 from Equation [11] and Equation [12] are
varied between —0.1 and +0.1. Model parameters: (A)—(F) I(x) =-sin x, D = 0.4, Q =2z, S(y) =1 cos y, [ =17.
Pulse duration 7= 0.31 of the monopolar single pulse in (B), and T = 0.46 of the bipolar single pulse in (E).

4.2 Symmetrical Bipolar Single Pulse

A symmetrical bipolar single pulse consists of a positive and a directly following nega-
tive pulse which are identical with respect to all parameters except for the sign of X
(Fig. 1B). From Equation [3] and Equation [5] it follows that during the positive pulse
X(?) S(l//{-) =1cos y; holds, so that the Langevin Equation [I] reads dy; /dt =
Q+NTYN, I'(y; —y,) +1cosy; + F;(t). In contrast, during the negative pulse
X(1) S(wj) =—I cos y; = I(cos y; + m). With this and by applying the transformation
g=w;+n(j=1,...N) to Equation [l], dg;/dt=Q+N"'>) I'(p,—¢)+
I cos g, + F;(t), which equals the Langevin equation belonging to the positive pulse.
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Hence, except for a shift of all phases by 7, the dynamics during a negative pulse is
identical to the dynamics during a positive pulse.

This difference is illustrated by comparing Z’s trajectories belonging to series of sim-
ulations where the same infinitely long positive pulse (Fig. 2A) or the same infinitely
long negative pulse (Fig.2 D) is administered at different initial phases, respectively.
Rotating the trajectories belonging to the positive pulse by p around the origin of the
Gaussian plane yields the trajectories belonging to the negative pulse. Let us denote the
attractor from Equation [10] of the infinitely long positive pulse by Z*' (Fig. 2A), and
the attractor of the infinitely long negative pulse by Z*“ (Fig. 2 D). The two attractors
have a phase difference of p, while their amplitudes are identical: |Z*| = [Z*“|.

To desynchronize the cluster of oscillators with a bipolar single pulse, the stimulus
has to be administered at the right initial phase, so that Z runs along a zigzag-like trajec-
tory from the stable limit cycle into the origin of the Gaussian plane (Fig. 2 E): Before
the bipolar stimulation Z runs on its stable limit cycle in counterclockwise direction. The
positive pulse starts in (‘0’) and moves Z towards the attractor Z{'of the positive pulse
(Fig. 2A). At the end of the positive pulse Z has been shifted halfway to Z%“’and is lo-
cated in ‘[]’. Due to the directly following negative pulse Z is abruptly shifted towards
the attractor Z* of the negative pulse (Fig. 2 D), so that Z darts sideways. At the end of
the negative pulse, Z is located directly in the origin of the Gaussian plane (‘@’). After
the bipolar single pulse the cluster resynchronizes (Fig. 2 C).

Figure 2 F demonstrates that for a given intensity parameter I correct values of the
duration T and the initial phase gg have to be chosen in order to achieve a strong desyn-
chronization. We denote the values of 7 and of g which lead to a maximal desynchro-
nization (i.e. Z = 0) by T,,;; and 9. With this we introduce the normalized phase error

crit

»— P
E,= 11
o [11]
and the normalized duration error
T — T
Ep =——<% [12]
Tcrit
To estimate the extent of desynchronization we define
R(t
_ Rtx) [13]
R(z)

i.e. the ratio between the amplitude R of the order parameter at the end of the stimula-
tion and R at the beginning of the stimulation. Figure 2 F' shows how r depends on E|,
and E;. Maximal desynchronization (r=0) only occurs for vanishing E, and E; A
strong desynchronization with r = 0.2 cannot occur for |E,| > 0.05 and |1E;1 > 0.05.

5. Double Pulse

5.1 Monopolar Double Pulse

The monopolar double pulse consists of two monopolar single pulses separated by a
pause (Fig. 1 C) (Tass 2001 a, c). The first pulse resets the cluster, whereas the second
pulse causes a desynchronization as explained in Section 4.1. In the stable synchronized
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state before the double pulse, Z runs on its limit cycle (Fig. 3 B). The first pulse is stron-
ger compared to the second pulse, i. e., the first pulse is longer and/or has a larger inten-
sity parameter /. Therefore during the first pulse Z is quickly attracted by the correspond-
ing attractor Z“' (Fig. 3 A, B). Independently of the initial dynamical state at which the
first pulse is administered, at the end of the first pulse Z is sufficiently close to Z{*
(Fig. 3 B). During the pause between the first and the second pulse Z relaxes to its stable
limit cycle in a stereotyped way (Fig. 3 C). The second pulse is administered at the right
initial phase so that Z is moved into the origin of the Gaussian plane, the desynchronized

state (Fig. 3 C). After the second pulse Z spirals back to its stable limit cycle as shown in
Figure 2 C.

Re(Z)
D E F 1
e _ e ;\
g g £
T - - /

25 0 05 1

Re(Z)

105 o ‘os

Re(Z)

Fig. 3 Trajectories of Z from Equation [8] are plotted in the Gaussian plane (same format as in Fig. 2).
Monopolar single pulse: (A) Series of identical positive pulses with X(f) S(y) = I cos y (with I =21) admi-
nistered at different initial phases ¢y in the stable synchronized state (‘0”). (D) Series of identical negative
pulses with X(#) S(w) =—I cos w (with I = 21) administered at different initial phases ¢g in the stable syn-
chronized state (‘0’). In both cases Z approaches the corresponding attractors Z“ (A) and Z**" (D) for
t — oo. Compared to Figure 2 A, D the intensity / is larger here (/ = 21 versus I = 7 in Fig. 2), so that a quick
reset is achieved, i.e., Z reaches its attractor rapidly. A monopolar double pulse consists of a stronger, re-
setting monopolar single pulse (parameters as in A) and a weaker, desynchronizing monopolar single pulse
(parameters as in Fig. 2 A). (B) Trajectory of Z before and during the first pulse of the double pulse. The first
pulse is administered at ‘0" and forces Z to the corresponding attractor Z“ (‘*’). (C) After the first pulse Z
relaxes from the attractor towards its stable limit cycle. The second pulse of the monopolar double pulse
starts at ‘o’ and moves Z into the origin (‘@’). A bipolar double pulse consists of a stronger, resetting bipo-
lar single pulse (parameters as in A and D) and a weaker, desynchronizing bipolar single pulse (parameters
as in Fig. 2 E). (E) Trajectory of Z before and during the first bipolar pulse of the bipolar double pulse. Be-
fore the stimulation Z runs on its stable limit cycle (inner circle) in counterclockwise direction. The positive
pulse is administered at ‘0’ and forces Z to its attractor Z{* (***). The directly following negative pulse then
moves Z to the attractor Z** (‘{)”). (F) At the end of the first bipolar pulse Z is located sufficiently close to
Z9" ($»”). During the pause between first and second bipolar pulse Z relaxes back to its stable limit cycle.
The desynchronizing bipolar pulse (with parameters as in 2 E) moves Z along a zigzag-trajectory: The posi-
tive pulse starts in ‘0’ and moves Z to ‘[]’, the directly following negative pulse shifts Z into the origin
(‘@’). Model parameters: (A)—(F) G(x) =—sinx, D = 0.4, 2 =2, S(w) =1cos y. I =21 in (A), (B), (D), and
(E). I=71in (C) and (F). Pulse duration 7= 0.51in (B), T=0.4in (C), T= 1 in (E), and T = 0.48 in (F).
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5.2 Symmetrical Bipolar Double Pulse

The symmetrical bipolar double pulse consists of two bipolar single pulses separated by
a pause (Fig. 1 D). Similar to the monopolar double pulse, the first bipolar single pulse
performs a reset, whereas the second bipolar single pulse desynchronizes the cluster as
explained in the former section. The first bipolar single pulse is stronger compared to the
second bipolar single pulse, which means that the first bipolar single pulse is longer and/
or has a larger intensity parameter /. Before stimulus administration Z runs on its stable
limit cycle (Fig. 3 E). The first bipolar single pulse performs a double reset: Independ-
ently of Z’s initial conditions, the resetting positive pulse shifts Z towards the corre-
sponding attractor Z3“" (Fig. 3A, E), in this way achieving a first reset. The directly fol-
lowing resetting negative pulse then moves Z towards the opposite attractor Z*%
(Fig. 3D, E), so that Z undergoes a second reset. After this zigzag-like reset Z is suffi-
ciently close to Z*“, and Z consequently restarts in a stereotyped manner: During the
pause between the first and the second bipolar single pulse Z tends to its stable limit
cycle (Fig. 3 F). The second bipolar single pulse is administered after a constant delay
and hits the cluster in a vulnerable state, so that a desynchronization is achieved as ex-
plained in Section 4.2. After the stimulation induced desynchronization the cluster resyn-
chronizes: Z spirals back to its stable limit cycle (Fig. 2 O).

6. Vulnerability to Stimulation

Figure 4 shows how a bipolar single pulse and a bipolar double pulse affect a cluster in
its stable synchronized state, where @g, the phase of the order parameter Z at the begin-
ning of the stimulation, is varied within one cycle [0 27]. We consider R, the amplitude
of the order parameter and the firing density p(f). The bipolar single pulse causes a
desynchronization only provided it hits Z at or close to a vulnerable phase ¢
(Fig. 4 A, B). In contrast, the bipolar double pulse causes a temporary desynchroniza-
tion, no matter at which initial phase it is administered (Fig. 4 C, D).

7. Demand-controlled Desynchronization

The bipolar double pulse explained in Section 5.2 desynchronizes a cluster indepen-
dently of its initial dynamic state. For this reason a bipolar double pulse can be used to
effectively block the cluster’s resynchronization. Whenever the cluster tends to resyn-
chronize, the same bipolar double pulse is administered in order to prevent the cluster
from resynchronization (Fig. 5). In this way an uncorrelated firing can be maintained.
The larger the coupling strength K, the more often a bipolar double pulse has to be ad-
ministered to cause a desynchronization.

8. Demand-controlled Deep Brain Stimulation

In several neurological diseases such as Parkinson’s disease or essential tremor, brain
function is severely impaired by pathological synchronization of neuronal firing. Parkin-
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sonian resting tremor appears to be caused by a cluster of neurons located in the thala-
mus and the basal ganglia which fire synchronously at a frequency similar to that of the
tremor (LLINAS and JAHNSEN 1982, PARE et al. 1990, LENZ et al. 1994). For instance, in
the anterior nucleus of the ventrolateral thalamus there are the so-called no-response
cells which are neither modulated by somatosensory stimuli nor by active or passive

10 20 30

Time [arb. units]

Fig. 4 Time course of the amplitude R of the order parameter from Equation [8] (A, C) and the firing den-
sity p(t) = n(0, 1) (B, D) before, during and after a bipolar single pulse (A, B) and a bipolar double pulse (C,
D), where @5 = ¢p/(2m) mod1, the normalized phase of the order parameter Z at the beginning of the stimu-
lation, is varied within one cycle. Stimulation starts at 7 = 0. At the bottom of each plot bipolar pulses are in-
dicated by bars. In A, B and C, D same parameters as in Figures 2 E and 3 E, F respectively.

20 40 50 60
Time [arb. units]

Fig. 5 Time course of the firing density p(t) = n(0, f). Two successively administered bipolar double pulses
with identical parameters are administered. The first one desynchronizes the cluster, whereas the second
blocks the resynchronization. Model parameters as in Figure 4. Begin and end of bipolar pulses are indi-
cated by dotted vertical lines connected by shaded regions at the top.
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movements (LENZ et al. 1994). These cells fire rather periodically in an intrinsic manner,
regardless of any feedback signals. In contrast, under physiological conditions the neu-
rons in this cluster fire incoherently (NINI et al. 1995). In patients with Parkinson’s dis-
ease (PD) this cluster acts like a pacemaker and activates premotor areas (premotor cor-
tex and supplementary motor area) and the motor cortex (ALBERTS et al. 1969, LAMARRE
et al. 1971, NInNI et al. 1995, VOLKMANN et al. 1996, BERGMAN et al. 1998), where the
latter synchronize their oscillatory activity (Tass et al. 1998). Similarly, essential tremor
also appears to be caused by a central cluster of synchronously firing neurons, which is
located in different brain areas compared to PD (ELBLE and KOLLER 1990).

In patients with advanced PD or with essential tremor who do not respond to drug
therapy any more, depth electrodes are chronically implanted in target areas like the tha-
lamic ventralis intermedius nucleus or the subthalamic nucleus with millimeter precision
(BENABID et al. 1991, BLoND et al. 1992). Up to now, electrical deep brain stimulation
(DBS) is performed by administering a permanent high-frequency (> 100 Hz) periodic
pulse train via the depth electrodes. DBS at high frequencies suppresses the neuronal
activity of the pacemaker-like cluster which, in turn, suppresses the peripheral tremor
(BENABID et al. 1991, BLOND et al. 1992).

High-frequency DBS has been developed empirically, mainly based on observations
during stereotaxic surgery (BENABID et al. 1991, BLOND et al. 1992). The mechanism by
which DBS at high frequencies suppresses pathological rhythmic activity has not yet
been clarified in detail. The permanent high-frequency stimulation basically mimics the
effect of tissue lesioning by suppressing neuronal firing (BENABID et al. 1991, BLOND
et al. 1992, WIELEPP et al. 2001). DBS is reversible and has a much lower rate of side
effects than lesioning with thermocoagulation (SCHUURMAN et al. 2000). However, per-
manent high-frequency stimulation is an unphysiological input which may cause an
adaptation of the stimulated neuronal networks. This may be one of the reasons why in
a number of patients the stimulation amplitude has to be increased in the course of the
treatment in order to maintain a therapeutic effect. As a consequence of the increased
stimulation strength, neighboring areas may be affected due to current spread, which
leads to severe side effects like dysarthria, dysesthesia, and cerebellar ataxia.

For this reason a different therapeutic approach with mild and efficient stimulation
techniques based on stochastic phase resetting (Tass 1999) has been suggested: Instead
of simply suppressing the neuronal firing in the pacemaker-like cluster, the novel stimu-
lation techniques aim at desynchronizing the pacemaker’s pathologically synchronized
firing in a demand-controlled way (Tass 2001 a, b, ¢, 2002 a, b). Accordingly, Equation [1]
models the effect of stimulation on the pacemaker-like cluster. In other words, instead of
stopping the driving force, I suggest to desynchronize it, so that it is no longer able to
entrain other brain areas like premotor areas and the motor cortex.

Up to now in all modelling studies only monopolar pulses have been used (Tass
1996 a, b, 1999, 2000, 2001 a, b, c, 2002 a, b). The results presented here show that at
least in a phase oscillator network bipolar pulses are equally suitable for the design of
demand-controlled double-pulse stimulation. Based on these results and using a net-
work of phase oscillators as a simple model for a neuronal population (KURAMOTO
1984, ERMENTROUT and KOPELL 1991, GRANNAN et al. 1993, HANSEL et al. 1993). 1
suggest to try to use demand-controlled DBS for the therapy of neurological diseases,
like Parkinson’s disease or essential tremor. To this end, the depth electrode has to be
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used for both stimulation and registration of the feedback signal, i.e. the local field po-
tential (LFP), which in the model corresponds to the firing density p defined by Equation
[9]. A desynchronizing bipolar double pulse is administered only and whenever the pace-
maker-like cluster becomes synchronized, or put otherwise, whenever its LFP exceeds a
critical value (Fig. 5). Note, that the first and the second bipolar single pulse of the bipo-
lar double pulse are delivered to the same site. The goal of this approach is to effectively
block the resynchronization and, hence, keep the firing as close to the physiological (i. e.
uncorrelated) firing mode as possible. Instead of the LFP registered via the depth elec-
trode one could alternatively use an epicortical electrode measuring the neuronal electri-
cal activity in cortical areas (e. g., premotor areas or the motor cortex) which are suffi-
ciently strongly synchronized with the target area stimulated via the depth electrode.

9. Discussion

In this study it was shown that a bipolar single pulse with the right intensity and duration
desynchronizes a synchronized cluster of phase oscillators provided the stimulus is ad-
ministered at a vulnerable initial phase ¢§" of the order parameter. Furthermore, it was
shown that a bipolar double pulse consisting of a first, resetting and a second, desynchro-
nizing bipolar pulse desynchronizes the cluster independently of the cluster’s dynamical
state at the beginning of the stimulation.

The dynamics of the order parameter Z during the bipolar single and double pulse
stimulation is different from Z’s dynamics during monopolar single and double pulse
stimulation (Fig. 2 and 3). Nevertheless, with respect to their desynchronizing effects
the monopolar and the bipolar stimuli are comparable. A bipolar single pulse desynchro-
nizes only if it hits the cluster close to the vulnerable phase ¢4 (Fig. 2 F and 4 A, B).
The same holds for a monopolar single pulse (TAss 1999). In contrast, a bipolar double
pulse desynchronizes the cluster, regardless of the dynamical state at which it is adminis-
tered (Fig. 4 C, D). Thus, a bipolar double pulse can be used to block the resynchroniza-
tion effectively (Fig. 5). Again, the same is true for a monopolar double pulse.

The fact, that monopolar and bipolar stimuli are exchangeable concerning their de-
synchronizing effects, is important for all applications where bipolar stimulation is more
favorable. For example, in medical and physiological applications charge-balanced stim-
ulation is typically required in order to avoid tissue damage.

The reset attained by means of the first, stronger bipolar pulse of the bipolar double
pulse guarantees that a desynchronization is caused independently of the initial dynami-
cal state of the cluster (see Sections 5.2, 6 and 7). The first bipolar pulse shown in Fig-
ures 3-5 consists of a positive and a negative monopolar pulse which both are so strong,
that they reset the cluster even when applied alone. Consequently, a reset is already
achieved after the positive pulse, i.e., the order parameter Z is sufficiently close to the
attractor Z*' of the positive pulse (‘*’ in Fig. 3 E). In other words, during the first bipo-
lar pulse the cluster undergoes a double reset: The first reset occurs at the end of the
positive pulse, the second reset at the end of the negative pulse.

If in an experimental application such a strong reset cannot be performed or should
be avoided in order to protect the stimulated system from damage, alternatively a reset-
ting bipolar pulse with reduced strength (i. e. with reduced intensity / and/or duration 7)
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can be used. In this case both the positive and the negative pulse of the first bipolar
single pulse alone perform only an imperfect reset, while the combination of the two is
strong enough to reset reliably. Accordingly, after the positive pulse there is still a certain
distance between Z and the attractor Z* of the positive pulse, and this distance depends
on the initial dynamical sate at the beginning of the stimulation. Nevertheless, after the
negative pulse Z is sufficiently close to the corresponding attractor Z“ independently of
the initial dynamical state. Hence, positive and negative pulse together reset the cluster
in a stereotyped manner.

All bipolar single pulses used in this study have a (+, —)-structure, meaning that their
first pulse is a positive pulse, whereas their second pulse is negative (Fig. 1). Instead of
bipolar single pulses with a (+, —)-structure one can also use bipolar single pulses with a
(-, +)-structure, where the first pulse is negative and the second pulse is positive. The
exclusive use of stimuli that have a (—, +)-structure corresponds to replacing X(f) —
—X(#) in Equation [5], which in turn is equivalent to the transformation ¢; — ¢; + 7 (see
the reasoning in Section 4.2). Except for this transformation the dynamics of the cluster
remains unchanged.

Interesting alternative options, however, ensue from mixing (+, —)- and (-, +)-stimuli.
To illustrate this, let us again dwell on the dynamics of the order parameter Z during the
bipolar double pulse (Fig. 3 E, F). After the first, resetting bipolar pulse Z is located in
the attractor of the negative pulse Z*". During the pause between the first and the second
bipolar pulse Z has to run through nearly one period before the desynchronizing, second
bipolar pulse can be administered (Fig. 3 F). Such a long pause between the first and the
second bipolar pulse may be a disadvantage in experimental applications, since this
pause is a period of time where fluctuations or unforeseen external influences can alter
the cluster’s dynamical state in a way that the desynchronizing impact of the second
bipolar pulse gets spoiled. To avoid such a long pause, we can replace the first bipolar
pulse with (+, —)-structure by a (—, +)-bipolar pulse. Consequently, at the end of the first
bipolar pulse Z is located in Z%* (“** in Fig. 3 E). During the pause between the first and
the second bipolar pulse Z then runs through less than half a period before the second,
desynchronizing (+, —)-bipolar pulse starts (in ‘o’ in Fig. 3 E). In this way the pause be-
tween the two bipolar stimuli is reduced by more than a factor of two. Furthermore, since
Z then does no longer cross the positive x-axis during the pause, there is no strong burst
of firing in between the two bipolar pulses any more (see Fig. 5). Obviously, the cluster’s
transient reaction during stimulation crucially depends on the pattern of consecutive
(+, -)- and/or (-, +)-stimuli.

Characteristic dynamical features of monopolar stimuli are passed on to bipolar stim-
uli, because bipolar stimuli are combinations of consecutively administered monopolar
stimuli. Let us consider the most important aspects.

The right stimulation parameters are reliably determined in an experimental applica-
tion with calibration procedures that have been developed for the monopolar single pulse
stimulation (TAss 1999) and the monopolar double pulse stimulation (Tass 2001 a, c).
These procedures work in the same way for the bipolar stimulation techniques presented
here: A series of test stimuli is administered. To extract a quantity that corresponds to the
phase ¢ of the order parameter Z from Equation [8], the phase of the dominant Fourier
mode is extracted out of the experimental data with bandpass filtering and Hilbert trans-
form, and, finally, the correct parameters are obtained with phase resetting curves. The
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Hilbert transform Sy of a signal s is generated by a filter which causes a phase shift of
7i/2 for all frequencies. Applying such a filter yields the instantaneous phase y and am-
plitude A of s according to s(t) + Sg(t) = A(t) expliy ()] (PANTER 1965).

The bipolar stimulation techniques presented in this article can also be used for de-
synchronizing cluster states, which are complex synchronized states, where a population
of coupled oscillators breaks into distinct clusters, each consisting of phase-locked oscil-
lators (SAKAGUCHI et al. 1987, STROGATZ and MIROLLO 1988, GoLoMB et al. 1992, Ha-
KIM and RAPPEL 1992). Cluster states may even occur in networks of globally coupled
oscillators (GoLoMB et al. 1992, HAkiM and RAPPEL 1992). In model Equation [1] noisy
clustering may emerge due to coupling terms of higher order like 7(x) =-K,, sin(mx)
(with K,, > 0). Increasing K,, above its critical value mD causes an m-cluster state,
which consists of m equidistant clusters, where all individual oscillators have the same
frequency (Tass 1999). For example, increasing K, above its critical value 2D gives rise
to a two-cluster state, where two clusters are synchronized in anti-phase. Synchronized
states of this kind appear to be important in the context of neurological diseases (Go-
LoMB et al. 1996, Tass et al. 1998). For supercritical coupling K,, > mD, the order param-
eter is given by

2
Za(0) = | w0y explimy) v [14)

(DAIDO 1992, Tass 1999). Note, that Z, is equivalent to the order parameter Z defined by
Equation [8]. Z,, runs on a limit cycle and has to be desynchronized as illustrated in
Figures 2 and 3. For monopolar stimulaton techniques it has already been shown that
this is most effectively achieved with a stimulus S containing terms of m-th order, e. g.,
S(y;) = I cos(my;) (Tass 1999, 2001 b, c, 2002 ¢). These results are also valid for bipolar
stimuli, because the latter are made up of monopolar stimuli. Accordingly, also in the
case of bipolar single pulse and bipolar double pulse stimulation, stimulation terms of
m-th order are favorable for a quick and strong desynchronization.

In this study we considered a stimulus of first order, i.e. a stimulus S(y;) containing
only terms with sin(y/;) and/or cos(y;). Instead of the stimulus S(y;) = I cos(y;), defined
by Equation [3], we can, alternatively, use the general form of a first-order stimulus:
S(y;) =1cos(y; + y) with constant y. Such a stimulus leads to the same stimulation
mechanisms as explained above. This can easily be seen by replacing w; by w; + y and
using the same arguing as in Section 4.2.

Applying a stimulus which additionally contains terms of higher order, e.g.,
S(yj) =1, cos(yj + y1) + I, cos(2y; + y,) with constant parameters Iy, I5, )i, )2, to the
model investigated here, causes a desynchronization in terms of a quenching of the or-
der parameter Z from Equation [8] in the same way as explained in Sections 4.2 and 5.2,
provided that the right stimulation parameters are used. The additional stimulation term
of second order, I, cos(2y; + ,), however, gives rise to an excitation of the amplitudes of
higher order terms Z,, from Equation [14], in particular, of Z, and Z,, so that |1Z,| and 1Z,l
are larger after the stimulation than before. During the transient after the stimulation the
vanishing order parameter Z damps the excited modes Z, and Z,, so that Z, and Z,
quickly relax to zero, and the strongest uniform desynchronization occurs with a delay
after the end of the desynchronizing stimulation. The order parameter-induced damping
of excited modes is due to the slaving principle (HAKEN 1983). This desynchronization
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mechanism has been studied in detail in monopolar stimuli (Tass 1999, 2001 c, 2002 b)
and holds equally in bipolar stimuli.

In a first approximation a phase oscillator can be used as a simple model for a rhyth-
mically active neurons (KuRAMOTO 1984, ERMENTROUT and KOPELL 1991, GRANNAN
et al. 1993, HANSEL et al. 1993). Accordingly, Equation [1] serves as a simple model
for a population of globally interacting neurons subject to stimulation and random
forces (Tass 1999). Hence, based on the results presented here I suggest to try to per-
form demand-controlled electrical deep brain bipolar double pulse stimulation for the
therapy of neurological diseases characterized by pathologically synchronized neuronal
activity, perturbing brain function. In contrast, standard DBS aims at mimicing the effect
of tissue lesioning by simply suppressing neuronal firing (BENABID et al. 1991, BLOND
et al. 1992, WIELEPP et al. 2001). As, for instance, in Parkinson’s disease the uncorre-
lated firing is the physiological mode of functioning in the relevant brain area, the de-
mand controlled block of the resynchronization in that area (Fig. 5) might be the milder
and more effective therapy which would aim at reestablishing the physiological function
instead of totally suppressing the neuronal firing in that particular target area.

Model-based novel DBS techniques may be more effective and may influence the
affected neuronal dynamics in a more subtle way. Correspondingly, statistical physics
may contribute to the development of therapies that avoid severe side effects. For this,
along the lines of a top-down approach, microscopic models have to be investigated
which take into account all relevant neurophysiological features such as the dynamics
of single ion channels, the anatomy of synaptic interactions, transmission delays etc.
Since microscopic models of this kind are much more complicated than a model of glob-
ally coupled phase oscillators, the dynamical mechanisms studied in the more macro-
scopic models will form a necessary basis and starting point for the study of micro-
scopic models.
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Absract

The electrically stimulated release of Ca®* from internal stores in the green alga Chara has the hallmarks of
an excitable system. The threshold-like dependence of Ca®* mobilization on electrical stimulation can be
simulated by a combined model comprised of (i) the voltage dependent synthesis/breakdown of the second
messenger inositol 1,4,5-trisphosphate (IP3) and (ii) the concerted action of IP; and Ca>* on the gating of
the receptor channels, which conduct Ca®* release from internal stores.

The model predicts a complex behavior of Ca>* mobilization under periodic stimulation including high-
er-order phase locking and irregular responses upon increased stimulation frequency. Similar dependencies
on stimulation frequencies were observed experimentally for the activation of action potentials. This demon-
strates that the all-or-none type activation of the action potential is in reality only the consequence of the
preceding all-or-none type mobilization of Ca** from internal stores.

Zusammenfassung

Die elektrisch stimulierte Ausschiittung von Ca** aus internen Speichern in der Griinalge Chara hat die Cha-
rakteristika eines erregbaren Systems. Die schwellenartige Abhingigkeit der Ca**-Ausschiittung von der
Stirke der elektrischen Stimulation kann durch die Kombination zweier Modelle erfolgreich beschrieben
werden. Dieses kombinierte Modell setzt sich zusammen aus: (a.) der spannungsabhidngigen Synthese/Ab-
bau des sekundiren Botenstoffes Inositol 1,4,5-trisphosphat (IP3) und (b.) der konzertierten Wirkung von
IP; und Calcium auf das Schaltverhalten des Rezeptorkanals, der den Ausflu von Calcium aus den
Ca**-Speichern leitet.

Das Model sagt ein komplexes Verhalten der Ca®*-Reaktion bei periodischer Stimulation voraus. Dies
schlieBt periodische Verdopplung und zufillige Ca®*-Antworten bei immer schnelleren Stimulationsperioden
mit ein. Genau dieses vom Modell vorhergesagte Verhalten findet man in Experimenten bei der Auslosung
von Aktionspotentialen in Chara. Dies belegt, da die ,,Alles-oder-Nichts“-artige Auslosung des Aktions-
potentials durch elektrische Pulse in Wirklichkeit lediglich die Konsequenz einer schwellenartigen Empfind-
lichkeit der Ca**-Mobilisierung aus internen Speichern gegeniiber elektrischen Pulsen widerspiegelt.

1. Introduction

Transient excursions of the concentration of cytoplasmic free Ca”* are important for
many stimulus-response-coupling processes in plant cells (REDDY 2001, SANDERS et al
1999). In a variety of higher plants it was found that hormonal or abiotic stimuli generate
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very complex Ca** responses with amplitudes and frequencies characteristic for the na-
ture of the stimulus (SANDERS et al. 1999, REppY 2001, PLIETH 2001, KNIGHT 2000).
The observation of these distinct Ca** responses to specific stimuli has fostered the
view that the information for the generation of stimulus specific responses is encoded
by a combination of Ca* response amplitudes and frequencies (MALHO 1999).

The mechanisms underlying signal/response coupling in plants and even more so the
mechanisms responsible for the distinct dynamics of Ca”* responses is still largely un-
known. Functional and molecular studies suggest that plants rely on signal transduction
cascades very similar to those known from animal cells (SANDERS et al. 1999, REDDY
2001). In this context it has been reported from many different lower and higher plants
that Ca>* can be mobilized from internal stores via the second messenger IP; (REDDY
2001, SANDERS et al. 1999, THIEL et al. 1990). Furthermore stimulus response coupling
processes can be blocked by treatments which interfere with the IP;-signaling pathway
(STAXEN et al. 1999, BiskuP et al. 1999). It is therefore perceivable that some of the com-
plex Ca®* responses in plants are generated by the operation of such a signaling cascade.

A promising model system for learning more about the details of signal response
coupling in plants is the giant alga Chara. This plant belongs to the Characeae, a class
of algae considered in evolutionary terms as ancestors of all higher plant cells (KRANZ
et al. 1995). So any conserved signaling pathway detected in plants will also be relevant
for higher plant cells.

The second benefit of the model system is that the plasma membrane of the Chara-
ceae is electrically excitable (UMRATH 1929). Central in this process is a voltage stimu-
lated transient rise in Ca** which in turn activates the CI~ channels responsible for the
transient membrane depolarization (review in THIEL et al. 2002). Recent experiments
have shown that the process of excitation is based on a voltage dependent production of
a long lived second messenger (WACKE and THIEL 2001). This second messenger, most
likely IP5 (Biskup et al. 1999), mobilizes Ca”" from the internal stores and in this way
initiates the excitation process. Much of the dynamics of the second messenger and its
dependence on voltage stimulation can be extracted from experiments in which Ca**
mobilization in these cells is examined under the influence of graded electrical stimuli.
From these studies a kinetic model was proposed, which is able to simulate most of the
experimental observations with respect to triggering of excitation with electrical stimuli
of variable strength and duration (WACKE and THIEL 2001).

A step forward towards understanding the dynamics of the whole process was ob-
tained by combining the aforementioned model on voltage dependent IP; production
with a well established model from animal cells. The latter model describes the mobili-
zation of Ca”* from internal stores in relation to the gating of the IP5 receptor channel,
i.e. the channel, which allows Ca”* release from the internal stores into the cytoplasm. A
kinetic four state model proposed by TANG and coworkers (1996) is sufficient to explain
the bulk of the experimental observations on IPs-generated Ca®* mobilization in animal
cells including complex dynamic processes. The model is based on the assumption that
Ca”* binds to the activating site of the channel only after IP; has bound the receptor, and
that the binding of calcium to the inhibitory site occurs only after Ca®* is bound to the
activating site. The present work shows that a combination of the two models is able to
simulate a large number of experimental observations with respect to voltage stimulated
Ca* responses and triggering of action potentials in Chara cells.
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2. Materials and Methods

All recordings were performed with isolated internodal cells of Chara corallina Klein ex
Wild. Culture conditions and handling of cells was described previously (THIEL et al.
1993). For experiments cells were bathed in artificial pond water (APW) containing
0.5 mM KCI, 0.5 mM CaCl,, 1 mM NaCl, 2 mM Hepes/NaOH pH 7.5.

Ratiometric measurements of cytoplasmic Ca”* were done as reported previously
(WACKE and THIEL 2001). Membrane voltage was measured with a conventional intracel-
lular microelectrode connected to a voltage recording amplifier (uP, Wye Science, UK).
Cells were stimulated with extracellular electrodes placed close to a Chara interodal cell.
Rectangular stimulation pulses were delivered to the cell by a pulse generator.

3. The Model

In a previous study it was shown that electrical excitation of a Chara cell involves a
voltage dependent production of a second messenger (THIEL and DiTyATEV 1998,
WACKE and THIEL 2001). This second messenger in turn promotes the release of Ca**
from internal stores. There is good evidence from experimental work that membrane
excitation in Chara can be triggered by injection of inositol 1,4,5-trisphosphate (IP3)
(THIEL et al. 1990) and that excitation is blocked by inhibitors of phospholipase C
(Biskup et al. 1999), i.e. the enzyme which catalyses the production of IP; from its
precursor phosphatidylinositol, 4,5 bisphosphate (PIP,). This stresses that the second
messenger in question involved in the excitation process is IP3.

Based on previous work (WACKE and THIEL 2001) the voltage stimulated production
and subsequent decomposition of IP5 can be well described by two coupled linear differ-
ential equations:

O[PIP
| ot 2k ki ([PIP, ]y — [PIP>],) — k2 [PIP], -
I[IP
[8:], = ky[PIP,], — k3[IPs], 2l
ca(i — fo)

We further define k, = for i-ip > 0 and k, =0 for i <iy (WACKE and THIEL

2001). Here i represents the current of a pulse; iy is the experimentally fixed minimum
current required for an infinite pulse to evoke an effect on [IP;] and ¢ the minimum
charge needed for effective excitation of the cell. ¢, is a dimensionless fitting param-
eter. The expression k, = C,[IP3]/q has the dimension Mol - C~ ! Hence k, is a measure
for the voltage dependent production of IP;, and with the stepwise defined response

function
<1 - ’-f’) it L1
fi) = ! 10 [3]

0 else
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Equation [2], can now be rewritten as

dl

dt
While this model gives a good quantitative account for the dynamics of the second mes-
senger in the process of membrane excitation it provides no insight into the actual
mechanism of the Ca”* release process.

Such a mechanism of IPs-generated release of Ca®* from internal stores is well un-
derstood in animal cells. Several models exist which underline the activity of the IP;
receptor channel in animal cells as a key step for the explanation of the Ca®* dynamics
in animal cells (review OTHMER 1997). This channel, which is localized in endomem-
branes, is the pathway for IPs-stimulated release of Ca** from internal stores. A mini-
mal model developed by TANG et al. (1996) successfully describes this IP5 receptor chan-
nel by a four-state model. The four states of the model reflect the fact that the receptor
has three distinct binding sites. These sites can either be empty (R), occupied by one 1P
molecule (RI), by one IP; molecule plus one Ca** jon (RIC,) and finally by an addi-
tional Ca®* ion (RIC,C_). The binding order of the ions and molecules to the receptor
is not free but proceeds sequentially from R over RI, RIC, to RIC,C_ and back. The
channel is only active in the state RIC, which accounts for the observation that low con-
centrations of Ca”* stimulate and high concentrations inhibit an IP; generated Ca®* re-
lease from internal stores. The state transition scheme for the IP3 receptor is given by
Equation [5]

kof (i)i — k3. [4]

Ky
R+1 = RI

ky
ks
RI+C == RIC, [5]

k45
ke

RIC, + C = RIC, C_

ks
in which the k;, i = £4, £5, £ 6, are the rate constants of the state transitions.
It is well known for animal cells and plants that excess Ca®* is effectively removed
from the cytoplasm back into internal stores by an endogenous Ca®* pump (e. g. REDDY
2001), which can be described by a Hill function:

[6]

In this equation p; and p, are the Hill coefficients. For more details see OTHMER (1997).

Let x;, i=2, ..., 5 denote the fractions of the receptor channel in states R, RI, RIC,,
RIC,C_respectively. We then define x; = C/C, with the volume average calcium concen-
tration Cy. OTHMER (1997) defined

Cy = C+v,Cs
(14v,)

in which C; is the Ca”* concentration in the store and v, the ratio of the endoplasmic
reticulum (ER) volume to the volume of the cytoplasm. By defining A=1+v,,

; [7]
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ks = ]€5C0, ke = ]€6C0, p1= ﬁ]/Co and p; = p_z/C() the model is governed by the follow-
ing five coupled non linear differential equations:

dx; 1 x‘lt

— =1 1— -

dt (VO + y1x4) ( xl) pg _|_x¢117

d

g = —k41)€2 + k,4X3,

dX3 -

o —(k—4 + ksxy) x3 + kalxo + k_sx4,

dx

7; = ksx1x3 + k_¢xs — (ks + kex1) X4,

d

§ = k6X1X4 - k,GX5. [8]
__._-'-_-_____—

plasma membrane

In
Kq ks ke
XZ X3 X4 XS
k-4 k-5 k-ﬁ
X
C32+ 1 — )
mobilization /’ Cac* buffer
2
RIC, Ca?* RIC, C..
Ca?* store ]

Fig. 1 A schematic of the voltage-stimulated IP; (I) production and activation of IP3/Ca2+—sensitive Ca**

channel on internal store. The receptor channel has three distinct binding sites, which can either be empty
(R), occupied in sequential order by one IP; molecule (RI), by one IP; molecule plus one Ca>* ion (RIC,)
and finally by an additional Ca** ion (RIC,C_). Ca®* release from internal stores only occurs in the state
RIC,.
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Here 7, represents the leak Ca** conductance of the Ca** store membrane in the absence
of IP; and y; the density of IP5 sensitive channels, both per unit volume of the ER.

To further understand the dynamics of Ca®* during excitation and the processes un-
derlying this dynamics in Chara we combined the model for voltage-stimulated produc-
tion of IP3 and the four-state model of the IP; receptor channel. In this combined model
[IP3]cy: is no longer — as in the original Othmer model — the input signal. Instead the
actual IP5 concentration resulting from a defined electrical stimulation is now calculated
from Equation [4]. In this sense the model gives the full account of the experimental
situation with an electrical pulse as input signal and a change in Ca®* as output signal.

For further details of the combined model see WACKE et al. (2003). Numerical integra-
tion of the six differential equations (i.e. Equation [8] together with Equation [4]) was
obtained by a 6™ order Runge-Kutta algorithm, as described in PRESS et al. (1988). A
scheme of the model including pools and rate constants is depicted in Figure 1.

4. Determination of the Parameters

In the first approximation we attempted to preserve the dynamics characteristic for the
animal system as good as possible. We therefore took — with the exception of k_¢ — all
parameter values in Equation [6] from the original model (OTHMER 1997). The values for
k> and i, were taken from WACKE and THIEL (2001).

5. Results and Discussion

The release of Ca®* from internal stores in Chara is the consequence of a typical excita-
ble system in which small stimuli are damped while sufficiently large stimuli result in

Ca2+/ uM Ca2+/ uM
6 1 1=
> 7 |-1.5uA
4 |
3 _"JI - 1.2puA 0.5 -
|
2 7 [ tk |
1 4 | ! Mﬁlﬂr\dﬁiw’«w " stimulation
| WNM&NWW
=1 T T 0 T T T
0 10 20 90 92 94
t/'s t/s

Fig. 2 Effect of pulse strength on experimentally recorded (left panel) and simulated (right panel) Ca**

transients. In the experiment a Chara cell was stimulated with a 100 ms long pulse with amplitudes of 1 pA,
1.2 pA and 1.5 pA. The three simulated Ca>* transients were obtained for 100 long pulses with the strength
of 3, 4 and 5 pA. For the values of the parameters see Table 1. In the simulations pulses were started after
90 seconds in which the system was allowed to equilibrate.
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Tab. 1 Model parameters used for simulation of the measured time courses.

Parameter Value Parameter Value
v 0.185 Ky 12.0 (uM s)™!
% 0.1s" ks 15.0 M s)™
71 20557 ke 1.8 (UM s)™!
7 8.5uM s k> 21.5MC™!
A 0.065 uM ky 8.0s”!
Co 1.56 M ks 1.6557!
io 2.5 pA kg 0.086 s

ks 025!

drastic changes in Ca®*. The left panel in Figure 2 illustrates an experiment in which one
Chara cell was stimulated by electrical pulses of constant duration and variable strength.
A small electrical pulse produced no perceivable effect on Ca*. Only a small 1.2 fold
increase in pulse strength resulted in a marked transient rise in Ca®*. A further increase
in pulse strength, however, caused no further increase in the Ca®* response. The Ca**
transient generated by a 1.5 pA pulse was similar in amplitude and kinetics to that
evoked by a 1.2 pA pulse. A plot of the peak Ca®* responses from the same cell versus
the pulse strength further illustrates this threshold like dependence (Fig. 3).

A similar excitable Ca®* response to electrical stimuli can be simulated with the com-
bined model for voltage stimulated synthesis of IP; and a four-state model for the IP;
receptor. The right panel in Figure 2 illustrates three model simulations with increasing
strength of stimulation. Very much like in the experiment the small pulse results in no
appreciable Ca®* response. Only a small 1.3 fold increase in pulse strength causes stimu-

ACa?*/r.u. °

1

I/r.u.

Fig. 3 Measured and simulated all-or-none mechanism. Peak Ca** response calculated from the model (as
in Fig. 2) for pulse strength between 0 and 25 puA (line). Measured peak Ca®* response (closed symbols)
evoked in one internodal cell by stimuli with different strength (same as in Fig. 2). Data were normalized to
the same ordinate setting of the last pulse which did not evoke an appreciable Ca®* response as 0, and the
mean maximal Ca** response as 1. Hence, I and ACa*" are shown in relative units (r. w.).
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0.5 -
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v
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[IP3]/ uM | K 5
N\ [IP3]

receptor state/ 0.6 A
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RIC,/r.U. 4
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0.4

[|P3}/HM 1.2 0.0 Caz’f/uM

Fig. 4 (A) Simulated Ca”* transient in response to a single stimulation (100 ms/5 pwA). Data were obtained
with the parameters listed in table 1. (B) Calculated changes in [IPs], the active (RIC,) and the inactivated
state (RIC,C_) of the receptor channel. (C) Dependence of the active state of the receptor channel on Ca**
and [IPs].
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lation of a near maximal response. A plot of the simulated peak Ca”* responses versus
stimulus strength results in a similar threshold-like dependence of Ca** release on the
strength of stimulation (Fig. 3).

The good agreement between experiment and simulation supports the view that Ca®*
is indeed released from internal stores via a mechanism which is depending on the vol-
tage-sensitive synthesis of IP5 and a concerted action of IP; and Ca®* for gating of the
Ca”* release channel. The model now offers the opportunity to uncover the dynamics of
the individual processes. Figure 4 A shows a simulated Ca®* response following stimula-
tion with a 100 ms long pulse of 5 pA. Underlying this stimulation is an initial rapid rise
in IP5. This causes a small increase in active receptor channels and hence Ca** release.
The resulting rise in Ca®* amplifies the fraction of receptor channels in the active state,
which in turn stimulates further Ca”* release. A further increase in Ca®* together with a
decrease in IP5 favors a transition of the receptor channel into the inactive state RIC,C_.
As a result the Ca®" release from the stores is accelerated (Fig. 4 B). The complex depen-
dence of the active state of the receptor channel on IP5 and Ca”* during excitation is seen
in the 3 D plot of Figure 4 C.

6. Periodic Stimulation

The model makes clear predictions of the behavior of the system. When a cell is stimu-
lated periodically it is obvious that any second response can only be achieved if the me-
chanism for IP3 synthesis is sufficiently recovered from the first stimulation in order to
allow a new round of IP; synthesis. Previous studies have shown that the recovery of the
PIP, pool, i.e. of the IP; precursor, occurs in the order of about 300 ms (WACKE and
THIEL 2001). So a failure of a response to periodic simulations related to limited IP; is
only relevant in a time frame of some 100 ms.

In addition to IP5 synthesis also the kinetics of the IP5 receptor channel is crucial for
Ca”* responses under periodic stimulation. Intuitively it is obvious that sufficient recep-
tor channels must have recovered from the inactive state to which they had gone during
the first stimulation in order to allow transition into the active state upon a second stimu-
lus. Figure 5 illustrates a simulation of Ca”* responses upon periodic stimulations. The
data reveal that at low frequency (0.02 Hz and 0.04 Hz) of stimulation Ca** is released
with a 1:1 response. An increase in stimulation frequency (0.11 Hz) results in a period
doubling of the Ca** response. Responses with large amplitudes are periodically fol-
lowed by responses with very small amplitude. When the stimulation frequency is in-
creased even further (0.20 Hz) the Ca** responses become irregular. Finally, an ad
ditional increase in stimulation frequency (0.23 Hz) results in a complete loss of respon-
siveness.

The behavior of the system under periodic stimulation can now be better understood
in the context of the model. The relevant time window in which the system becomes
refractory is at least an order of magnitude larger than that relevant for the regeneration
of the PIP, pool (WACKE and THIEL 2001). Hence a limitation of IP3 synthesis can be
excluded as an explanation for the failure of the system to respond to each stimulus un-
der high frequency stimulation. The reasons for the refractory behavior are more likely
found in the gating kinetics of the IP5 receptor channel. In this context a critical param-
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Fig. 5 Simulated Ca®* transients in response to periodic stimulation with increasing frequency. Shown are
parts of time courses, which were simulated with the parameters listed in Table 1. The stimulation frequen-
cies are given with corresponding traces. The pulse duration was 100 ms. During the first 330 s of the simu-
lation the system was allowed to equilibrate.
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Fig. 6 Peak Ca®" responses from simulations in Figure 5 as a function of the fraction of receptor channels
in the inactive state RIC,C_ at the onset of stimulation. The different symbols represent stimulations with
0.04 Hz (@) 0.11 Hz (O) and 0.20 Hz (A).

eter for the responsiveness of the system is the recovery of the receptor channel from the
inactive state RIC,C_. Figure 6 shows a plot of the peak Ca®* response as a function of
the fractional occupation of the receptor channel in this state immediately before stim-
ulation. The data show a clear dependence of the Ca”* response amplitude on the in-
active state of the receptor channel. Particularly interesting is the finding of a large data
scatter under conditions of high frequency stimulation. This result again highlights the
fact that the entire system is depending on the interplay of several dynamical variables.
The occupancy of the receptor channel is a crucial parameter but not the only one.

Previous experiments have revealed that periodic stimulation of Chara cells triggers
Ca”* responses similar to those predicted from the simulations (WACKE et al. 2002). This
includes the observation of higher order phase locking to the external signal and irregular
responses as consequence of progressive stimulation frequency. The irregular response is
characterized by an irregular sequence of peak heights provoked by the external periodic
signal, which does not fit into a simple phase-locking scheme. To further examine the
stimulus response coupling in Chara cells under periodic stimulation we measured the
response of the membrane voltage to electrical stimulation. The rationale behind this is
that the CI” channels, which carry the membrane depolarization of the action potential,
are thought to be activated as a direct consequence of an elevation of Ca®* (THIEL et at.
2002).

Figure 7 show the representative results from one experiment in which a Chara cell
was stimulated with a constant pulse (200 ms/5 pA) at different frequencies. The exemp-
lary voltage records shown in Figure 7 reveal that stimulation either caused a clear action
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Fig. 7 Triggering of action potentials in a Chara cell in response to periodic stimulation (200 ms/5 pA).
(A) A cell either responded to a stimulation with an action potential (+) or no action potential (-).
(B) Responses of a cell to periodic stimulation with various frequencies. Stimulations, which evoked an ac-
tion potential are represented by a long bar; those which failed to elicit an action potential are represented
by a short bar. Stimulation frequencies are given on the left of each stimulation cycle. Between each stimula-
tion cycle the cell was allowed to equilibrate for 240 s.
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potential or a fast recovering depolarization. For data presentation and analysis the re-
spective responses were identified and presented as long or short dashes for an AP or
no AP, respectively. The data in Figure 7 illustrate that low frequency stimulation causes
phase-locked APs with a period ratio of 1:1. An increase in frequency results in a tran-
sition to a 2 : 1 phase locking. After a further increase in stimulation frequency the mem-
brane responses become irregular. Finally the lower panel in Figure 7 shows that an even
further increase in stimulation frequency causes after an initial AP a complete silencing
of the cell.

The data show that the same dependence on periodic stimulation observed for the
Ca”* response is also detectable on the higher level of complexity namely the mem-
brane voltage. This is a clear demonstration of the fact that the activity of the ion chan-
nels, which carry the action potential, is the consequence of the changes in cytoplasmic
Ca**. So unlike suggested by others (TAzZAWA et al. 1987, KiIkuyaMA and TAZAWA 1998,
LUNEVSKY et al. 1983), it is indeed the Ca”* release mechanism which makes up the
excitable system and not the plasma membrane channels.

7. Conclusions

We have described a model for calcium dynamics in Chara in the context of electrical
stimulation and generation of action potentials. We could show that model predictions
agree with experimental results. The fact that the core of the model is based on a descrip-
tion of the IP5 receptor channel in animal cells suggests that the stimulus evoked Ca**
dynamics in Chara shares many similarities with that in animal cells. This notion is sup-
ported by the findings that plant cells have the essential components of the IP5 signaling
cascade including IP5-sensitive receptor channels (REDDY 2001, SANDERS et al. 1999)
and that also Chara cells are responsive to elevation of [IPs] (THIEL et al 1900).
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Chaos and Synchronization
(Comment)

Barbara DrossSEL (Darmstadt)

With 1 Figure

Session number 3 was entitled “Chaos and Synchronization” and I would like to add

“and noise”. The five speakers gave interesting talks that stimulated lively discussions.

The first talk, by Holger KaNTZ, discussed how fast chaotic degrees of freedom can act

as white noise, opening the fascinating perspective that biological systems might be ca-

pable of generating the noise needed for their own functioning. The second talk, by Arka-
dy Pikovsky, showed how chaotic systems can become phase synchronized without
loosing their chaotic nature, as manifest for instance in the behavior of the amplitude.

Next, Thomas DITTrRICH focused on quantum aspects of chaotic systems, with the aim

of modeling ratchet-like behavior on the small scales relevant for biological processes.

Then, Frank JULICHER gave an excellent presentation of the capabilities of hair cells in

the inner ear to amplify sound over a wide range of amplitudes and frequencies by acting

as connected nonlinear oscillators sitting close to a critical point. Finally, Hans Albert

BrauN mastered the difficult task of keeping the audience awake after the wine recep-

tion by giving us visual and acoustic impressions of the manifold spiking patterns gener-

ated by cold receptor neurons, which he could explain using a Hodgkin-Huxley type
model.

It was impossible for me to survey these talks in such a way that a single thread or
governing theme becomes visible. They are more appropriately compared to the nodes of
a highly connected network, with strong links between the talks, and with each talk pre-
senting different facets of the rich interplay between the phenomena chaos, synchroniza-
tion and noise. Let me briefly discuss each of these links (Fig. 1).

— KaNTZ-Pikovsky: Both talks mentioned how strange attractors can become de-
formed. KANTZ showed that most attractors have points where a small perturbation
creates a new trajectory that does not lead back to the original one, with the conse-
quence that noise deforms these attractors. PiIkovsky showed that the phase of a
chaotic trajectory can easily be changed by coupling to a periodic driving or another
attractor.

— KaNtz-DrrTRICH: There are limits to chaos on small scales. KANTZ mentioned limits
that are due to the finite amount of information that can be gathered, implying that
prediction of the trajectory becomes impossible on sufficiently fine scales. DITTRICH
pointed out that quantum mechanics imposes a fundamental limit on the density of
information in phase space, making quantum systems quasiperiodic.
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Fig. 1 The network of talks

KanTz-JULICHER: While KaNTZ considered the possibility that biological systems
are capable of tuning their own noise, JULICHER argued that inner ear hair cells do
tune their parameters such that they are close to the critical point where a transition
from non oscillating to (spontaneously) oscillating behavior occurs.

KaNTZ-BRAUN: In both talks noise was an important ingredient. KaANnTZ focused on
obtaining noise from fast chaotic degrees of freedom, and BRAUN used noise super-
imposed to a periodic oscillation in order to generate the observed spike trains.
Pikovsky-DitTrRICH: Both talks mentioned chaos becoming periodic, once due to
periodic driving, and once due to quantum effects.

PikovskY—JULICHER: Synchronization was the central theme of both talks. PIKOVSKY
showed how chaotic attractors can become synchronized with each other, and JULI-
CHER showed that the inner ear hair cells move in synchrony.

PIKOVSKY—BRAUN: One of the main dynamical features in both talks was oscillating
behavior, once in the phase of a strange attractor (PIKOVSKY), once in the basic dy-
namics of a cold receptor neuron (BRAUN).

DitTrRICH-JULICHER: Both talks were interested in transport phenomena. While DITT-
RICH focused on the emergence of transport in quantum systems, JULICHER argued
that motor proteins drive the oscillations of the inner ear hair cells, although the pre-
cise mechanism is not yet understood.
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— DrrtricH-BRAUN: Both talks dealt with systems that would have regular behavior in
the absence of noise. In quantum systems, coupling to the (noisy) environment causes
decoherence and consequently classical behavior, and the cold receptor neurons
would fire in a regular sequence in the absence of noise.

— JULICHER-BRAUN: Finally, inner ear hair cells and cold receptor neurons both ampli-
fy a weak signal, hair cells by using a nonlinear oscillator, and cold receptors by
adapting the threshold for firing.
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Robustness versus Sensitivity — Can Biological
Systems Behave Chaotically?

Holger KanTZz (Dresden)

Abstract

We discuss aspects of robustness and of sensitivity of different types in nonlinear dynamics. Chaotic motion
is sensitive to changes of initial conditions, to changes of parameters, and to influences of external noises.
Due to this lack of robustness the evolutionary advantage of chaotic behavior in biology is unclear. We hence
argue that nonlinear dynamics in biology will typically operate in parameter regimes of stable limit cycles.

Zusammenfassung

Fiir die verschiedenen Typen nichtlinearer Dynamik werden Aspekte von Robustheit und von Empfindlich-
keit gegeniiber Storungen diskutiert. Chaotische Dynamik reagiert sensibel auf Anderungen der Anfangs-
bedingungen, Anderungen von Systemparametern und auf eingekoppelte stochastische Storungen, wihrend
nichtlineare Grenzzyklusdynamik gegen alle diese Einfliisse robust ist. Aufgrund dieser Empfindlichkeit ist
der evolutiondre Vorteil chaotischen Verhaltens in biologischen Systemen unklar. Im Artikel werden ver-
schiedene dynamische Phinomene der Biologie, wie beispielsweise sensorische Einheiten, physiologische
Regelkreisldufe und Populationsentwicklungen, auf die Relevanz von Robustheit hin untersucht. Die all-
gemeine SchluBfolgerung ist, dal in den meisten Fillen eine Robustheit gegen Storungen unerldBlich ist,
und somit nichtlineare Systeme in der Biologie evolutionsbedingt in Parameterbereichen operieren sollten,
in denen stabile Grenzzyklen existieren.

1. Introduction

Deterministic chaos is a kind of paradox in itself: Despite determinism in the sense that
the precise setting of the initial condition leads to a uniquely determined solution for all
times into the future, the detailed behavior of exactly this solution is unpredictable, if the
initial condition is known only within some measurement error. The reason for this be-
havior lies in the intrinsic instability of chaotic solutions: Any tiny (more precisely, in-
finitesimal) change of the initial condition leads with probability one to a very different
solution in the long run. This is in strict contrast to regular solutions, where a slight
change of the initial condition leads to a modification of the solution by a similar mag-
nitude. Hence, in chaotic systems, similar causes do not have similar actions, but identi-
cal causes do have identical actions.

The mathematical theory of dynamical systems, including bifurcation theory and er-
godic theory, is well established (GUCKENHEIMER and HOLMES 1983, OTT 1993), so that

245



Holger Kantz

the origin of such strange behavior is fully understood. In particular, it is related to linear
stretching and nonlinear folding of the phase space by the equations of motion. Nonlin-
earity hence is required, although not sufficient for chaos. To be more specific, we define
a dynamical system by its equations of motion to be of the type

—

X=f(%), [1]

where ¥ € I' C R¢ and f € R? (I' is called the phase space or state space). If the vector
field f representing the forces is Lipshitz continuous, i.e., if there exists a finite real
number k such that |f(X) — f(¥)| < k|¥ — | for all X, ¥, then the initial value problem
X(t = 0) = X, has a unique solution X(¢) for all times ¢. This property is called determin-
ism.

The theorem of Poincaré-Bendixon states that if the phase space G is two dimen-
sional or less, then the solutions x(f) of any initial condition have, if they remain inside
a bounded region, no other choice than either becoming periodic or settling down on a
fixed point. Hence, in two-dimensional systems of the form of Equation [1], chaos is
excluded.

The Poincaré-Bendixon theorem is an important result in order to discuss the notion
of nonlinearity in a different way: It is evident that a set of linear equations of motion
such as those of the harmonic oscillator,

i=v, Vv=-—-ox, 2]

can be made nonlinear by a suitable change of coordinates. Still, the solutions (which
might be very unfamiliar to us in the transformed coordinates) are the well known har-
monic oscillations. So the essential aspect for the possibility of a system to behave chaot-
ically is not the nonlinearity proper, but it is the issue of whether it is decomposable into
uncoupled at most two-dimensional subsystems by a suitable change of coordinates. For
an arbitrarily high dimensional linear set of equations, this is always possible, whereas
nonlinearity generally, but not always, is prohibitive.

Even if such a decoupling of a three- or higher dimensional nonlinear system is not
possible, such systems often do not behave chaotically but instead exhibit motion on
stable limit cycles or regular motion on tori in phase space. Hence, stable regular mo-
tion is as typical of nonlinear dynamical systems as chaos. Unfortunately, due to rather
obvious reasons, it makes no sense to quantify how probable either of the two behaviors
is for a given set of equations, when we consider to randomly choose its control param-
eters. As an example of this, let us consider the well known logistic equation

Xn+1 = T'Xp (l_xn) [3]

which is a time discrete dynamical system' and can, e. g., be interpreted as a model for
the size of a population, x,,, whose reproduction rate goes to zero due to a shortage of
food supply when the current population is close to the maximum x = 1. In the way this
model is written, about 70 % of all possible values of r (which is restricted to the interval
[0, 4]) yield periodically oscillating populations. However, by setting » = In ¢, the corre-

1 The Poincaré-Bendixon theorem does not apply to discrete time systems, hence this one dimensional non-
invertible map can in fact exhibit chaos, depending on the value of r.
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sponding percentage when taking g € [1, ¢*] as the control parameter is very different.
Hence, since equations of motion always contain some arbitrariness, one cannot specify
whether chaos or regular motion is the more typical one, as soon as both have a finite
probability to occur.

The literature on mathematical models for biological systems contains many exam-
ples of chaotic dynamics. However, as it will be briefly discussed in the following sec-
tion, empirical evidence for chaos in nature is lacking, but also not to be expected be-
cause of the fact that biological systems typically are coupled to a noisy environment.
Hence, the analysis of observed data will not yield an answer to whether natural systems
can behave chaotically. We therefore want to discuss different issues of robustness of
chaotic and of regular motion. We will then compare these results to hypothetical robust-
ness requirements for biological systems in terms of their fitness in order to identify
situations or mechanisms, where chaos might be beneficial or destructive for life.

2. Lack of Observations of Chaos from Biological Data

In order to verify the presence of deterministic chaos in an experiment, one has to record
a time series of some suitable quantity which can be measured with some precision.
Time series analysis (ABARBANEL 1996, KANTZ and SCHREIBER 1997) can then tell
whether or not the signal represents a chaotic dynamical system. Since typical time se-
ries data represent just a single quantity, whereas the dynamics of the system underlying
the data lives in some vector valued phase space, embedding techniques are employed to
reconstruct a phase space. The clearest signature of determinism then is the confinement
of the reconstructed state vectors to a lower dimensional manifold in the embedding
space. This is typically studied by numerical dimension estimates of the data set (GRASS-
BERGER and Procaccia 1983). Low dimensions have been reported for many signals
from biological systems such as, e.g. the human heart. However, taking into account
current knowledge about the problems in the analysis of intermittent and nonstationary
data (as data from field measurements very often are) (THEILER 1986, 1991, HEGGER et
al. 1997, ScHREIBER and KANTZ 1996), together with other difficulties and the often
rather diffuse scaling ranges, almost every of these dimension estimates leaves some
doubts whether they are really indications of the existence of low dimensional manifolds.

This does not mean that no finite dimensional manifolds exist, since it is also quite
well understood how measurement noise, the high dimensionality of an attractor, or other
problems can make it almost impossible to verify for a truly chaotic system the presence
of this finite dimensional manifold when working with noisy observations (SCHREIBER
and KANTZ 1996). Since systems in nature are never isolated, it is not to be expected to
find deterministic chaos, but rather one might see a stochastic process which is unstable
also in its deterministic limit. In such a situation, chaos plays an important role for the
dynamics, but cannot be detected by dimension estimates due to the lack of determinism.

An alternative to dimension estimates which in most cases would be much more con-
vincing is to construct a deterministic chaotic model of a given system. One then has to
verify that the model dynamics is really consistent with the observations and vice versa,
one should also demonstrate that different model behavior such as regular dynamics per-
turbed by noise is not consistent with the observed data.
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In summary, the author of this article is not aware of any example of data analysis which
clearly and unambiguously supports that a biological system behaves chaotically, but
there could be many reasons why a system where chaos plays a relevant role cannot be
identified as being chaotic on the basis of observations.

3. Robustness versus Sensitivity
3.1 Robustness against Initial Conditions

As mentioned before, one striking feature of chaos is its sensitivity with respect to
changes in the initial conditions. In a chaotic system, the distance between two different
solutions ¥(7) and ¥(¢) both subject to exactly the same equations of motion but emerging
from slightly different initial conditions |x) — yy| = ¢ << 1 grow, on average and with
probability one, exponentially in time, i.e., |¥() — y(r)| = ee™, as long as this distance
remains much smaller than unity. Such a behavior can also be found in unstable linear
systems, but nonlinearity in addition to instability can introduce folding effects such that
this exponential divergence can take place despite the fact that in the long run both solu-
tions remain inside a finite domain of the phase space. The latter is a very natural re-
quirement for every physical or biological system, since it guarantees that arbitrary meas-
urement functions yield finite values. Chaoticity expresses itself in a measurement
sequence by the irregularity and aperiodicity of the fluctuations observed.

Since an individual solution is a very unstable object, the indecomposable invariant
sets are a very useful concept for a description of a system’s behavior. In dissipative
systems those sets which can be observed in experiments are attractors, i. e., initial con-
ditions from a whole neighborhood of the invariant set (the basin of attraction) yield
solutions which enter the set and remain there. Hence, although two slightly different
initial conditions create very different trajectories, both fill the same invariant set in an
ergodic way if they were both started in its basin of attraction. Quantities which are used
to characterize chaotic motion, such as Lyapunov exponents, the Kolmogorov-Sinai en-
tropy, or the attractor dimension are identical for all initial conditions inside the same
basin of attraction, when discarding a transient. Hence, ergodic averages along a trajec-
tory are in fact robust against changes of initial conditions, but time dependent properties
are not.

As a particular conclusion, we can say that when the initial condition of a chaotic
system in biology is set by some stimulus, then the reaction of the system is not well
defined, because the slightest change of the stimulus will manifest itself in a macroscop-
ically different reaction after a finite time.

3.2 Robustness against Parameter Changes

We said that ergodic averages along arbitrary trajectories on the same invariant set are
identical with probability one. In other words, if we are interested in time averaged quan-
tities only, sensitivity to initial conditions is not a problem, as long as the initial condi-
tions remain inside the basin of attraction. However, also these time averaged quantities
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may depend sensitively on some quantities, namely on the system’s parameters. Naively
one could expect that, e. g., the mean value of X(¢) inside an invariant set should depend
smoothly on the change of system parameters. Unfortunately, this is true only for struc-
turally stable systems, i.e., for systems, where the topological structure of the invariant
set does not change abruptly, when a control parameter is modified. More precisely, a
system is called structurally stable, if the infinitesimal change of a control parameter
can be compensated by a coordinate transform. Structural stability, however, is the ex-
ception rather than the rule, when the invariant set supports chaotic dynamics. The for-
mal requirement for structural stability is that the set is hyperbolic, i.e., that expanding
and contracting directions are transverse to each other everywhere. This property can be
proven to hold for stable and unstable periodic solutions in large ranges of the control
parameters, however, for chaotic motion this is known to hold only in a few specific
systems.

So what instead happens when changing a system parameter is that bifurcations oc-
cur, i.e., periodic orbits change their topology and stability properties. Since infinitely
many unstable periodic orbits are densely embedded in chaotic attractors, lack of hyper-
bolicity means that for any arbitrarily small parameter change some of these orbits un-
dergo a bifurcation. The ergodic averages on the attractor change in a dramatic way,
when such a bifurcation yields a stable periodic orbit (Newhouse sinks). In fact, it is
well known that inside the parameter ranges of most model systems which create chaot-
ic regimes, arbitrarily many (correspondingly small) windows of parameter values exist,
for which the solutions are not chaotic but are complicated periodic orbits (GUCKENHEI-
MER and HoLMES 1983). Hence, when control parameters of a chaotic dynamical system
are not precisely fixed, also temporal averages might change their values abruptly, if the
system is not structurally stable.

3.3 Robustness against Noises

When external noises are coupled into a system, one is formally leaving the class of
dynamical systems (ARNOLD 1999). Nonetheless, when the noise amplitude is small, it
makes sense to compare the behavior of the noisy system to the one of the noise free
system. In such a case, the two types of instability discussed in the previous two subsec-
tions are relevant. First of all, if we consider an isolated perturbation of a chaotic trajec-
tory at some time o, then it is evident from Section 3.1 that the perturbed and the unper-
turbed solution will diverge exponentially fast after the perturbation. Hence, after some
time they will be macroscopically different but they will be on the same invariant set.

If perturbations occur at any time, then we have to study the effect of accumulated
perturbations. In such a case it might be more instructive to interpret a perturbation of
the current state vector as the perturbation of the parameters of the system, since we have

x(t) = f,(F(10) +n(1) = f(F(1)), [4]

i.e., the vector field for parameters p at the perturbed state X(¢) + #(¢) is identical to the
vector field for some perturbed parameters p at the unperturbed state. Of course, the
conversion of noise in the state vector into noise in the parameters changes the distribu-
tion of the noise, and requires additional (technical) assumptions about the effect of param-
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eter changes on f Nonetheless, this interpretation tells us that noise in the state vector
can create trajectories which are not close to solutions of the unperturbed system. Ex-
actly this issue is studied in the framework of shadowing: A noisy trajectory is said to
be shadowed by a solution of the unperturbed system, if such a solution exists which
remains close to the noisy solution for all times. It has been proven (ANosov 1967, Bo-
WEN 1975) that such shadowing trajectories exist in systems which are structurally
stable. In systems without this stability, noise can drastically modify the ergodic proper-
ties, as it has been discussed (e. g. in JAEGER and KANTZ 1997, SOMMERER et al. 1991).

4. Regular Motion

In the last section we discussed sensitivity and robustness of chaotic motion. The situa-
tion is completely different for regular, i.e., non-chaotic solutions of the same system,
which may be found by simply changing the control parameters.

When the attracting invariant set is a stable limit cycle or even a fixed point, then
typically there is no sensitivity to initial conditions (apart from the case of transient
chaos; KANTZ and GRASSBERGER 1985). Hence, in the sense of the response to an exter-
nal stimulus, a system with regular solutions produces reproducible responses also for
slightly different stimuli.

Bifurcations occur of course also for stable periodic solutions. However, for a single
stable orbit, they are separated by finite intervals of the control parameter. Hence, the
ergodic averages over the invariant set are robust against changes of parameters inside
a given interval of those, if the corresponding dynamics is regular. In other words, away
from the bifurcation points, a periodic orbit is a hyperbolic set and hence changes of the
parameters are equivalent to smooth coordinate transforms.

Finally, when noise is coupled into dynamics of limit cycles, shadowing holds: since
the invariant set is hyperbolic and hence structurally stable, the perturbed motion close to
the limit cycle can be shadowed by an unperturbed solution, which means that the noisy
motion looks like measurement noise on an unperturbed solution.

In summary, all the sensitivities which we encounter when the motion is chaotic dis-
appear for limit cycle motion, apart from the vicinity to bifurcation points.

5. Robustness and Fitness
In this section we will attempt to interpret the above observations in terms of fitness in
the evolutionary selection process. When asking for the possibility of chaos in biological

systems, the hypothesis behind this is that chaos can only exist if it does not reduce the
performance of an organism or a population.

5.1 Input-output Systems and Small Signal Amplification

Sensory systems are dynamical input-output systems: A stimulus arrives and causes
some reaction of a dynamical system. A prominent limit cycle system is the excitable
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Hodgkin-Huxley model for nerve cells. As discussed before, a chaotic system would
depend so sensitively on the stimulus that its response would appear to be irreproduci-
ble.

Can sensitivity to perturbations be useful? Yes, it can, in the sense of acting as an
amplifier. A phenomenon which is known to be relevant in many biological systems
and which is discussed thoroughly in several other contributions in this book is stochas-
tic resonance. In this case, the small signal to be amplified is periodic, the system acting
on it is nonlinear (often bistable, but never chaotic), and under certain circumstances the
nonlinear system starts to synchronize with the very weak periodic perturbation in an
optimal way, if it is additionally perturbed by white noise of suitable intensity. In an al-
most noise free environment, it might be beneficial for a sensory system if it can create
its own noise. It has been shown in JUST et al. (2001) that fast chaotic motion coupled to
a bistable system can in fact fully replace external noises. The required time scale sep-
aration speeds up the chaotic system such that the Kolmogorov-Sinai entropy becomes
arbitrarily large, and most details of the chaotic system lose their relevance. However, it
is essential that the entropy remains positive, i.e, that the system remains chaotic. The
only argument against such an auto-generated stochastic resonance in a living organism
is that it should be much easier to use true noises on the cellular level (e. g., coming from
ion channels) rather than chaos for the described purpose.

A much more direct amplification mechanism can be used by nonlinear systems close
to bifurcations. The dynamics of hair bundles studied by JULICHER (2003, this volume) is
an excellent example for that. The small signal amplification near bifurcation points has
originally been proposed by WIESENFELD (VOHRA and WIESENFELD 1995). Speaking
about robustness, it requires a fine tuning of a system parameter in order to be close to
the bifurcation point, possibly controlled by a suitable feedback mechanism.

A direct chaotic amplifier, making use of the sensitive dependence on initial condi-
tions, has not been reported and most surely would not work: When two initially very
similar states have achieved a macroscopic distance from each other because of the ex-
ponential instability, then the relation between the initial conditions and the actual state
are described by such a highly nonlinear function that it would be extremely difficult to
invert it. Additionally, all noises acting onto the trajectories during this evolution make it
impossible to infer the initial states from the final states, because they have been ampli-
fied as well.

5.2 Unpredictability as a Benefit?

The striking feature of chaotic time evolution is its unpredictability. So one can think
about the existence of situations where unpredictability would be beneficial. One such
situation could be population dynamics, similar to how the occurrence of prime number
cycles of cicade populations have been interpreted by MARKUS and GOLES (2002): If the
population of a prey fluctuates chaotically, the predator cannot rely on its availability and
would be forced to prey on another species. Hence, one could study whether populations
whose dynamics can be reasonably well described by the logistic equation, Equation [3],
correspond to parameters r in the periodic or in the chaotic regime.
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5.3 Regulatory Systems

It seems, however, that most regulatory systems, i.e., feedback loops, are operating in
periodic regimes. The well known Mackey-Glass delay equations for the production of
red blood cells are able to generate chaotic fluctuations. As discussed in MACKEY and
GLass (1977), such chaotic fluctuations have to be considered as a disease. The misbe-
havior of a system due to wrongly tuned parameters has been called dynamical diseases
in BéLAIR (1995). When looking through the different topics discussed, one observes that
chaoticity in this context typically represents a disease whereas regularity represents the
healthy state. One exception is the human heart, where regular beating is pathological.
However, until now the irregularities of healthy heart dynamics have not been shown in
a convincing manner to be deterministically chaotic, but also the pathological chaotic
states of, e. g., the Mackey-Glass dynamics have not been verified in experimental data®.

6. Conclusions

We have discussed aspects of robustness and instability of different types of nonlinear
dynamical behavior. Whereas limit cycles are robust with respect to perturbations of
any kinds in certain ranges, chaos is not. We discussed some possible scenarios in order
to identify beneficial consequences of chaos despite its sensitivity or even through its
sensitivity, and there might be situations where chaos could enhance the fitness of an
individual or of a species. Although there are several mathematical models of biological
phenomena which behave chaotically for suitable adjustments of their parameters, when
studying the literature one finds that convincing reports of chaos in real biological sys-
tems are almost non-existing. In contrast to that, many examples, some of them being
included in this book, show the existence of limit cycle motion. Hence, in this contribu-
tion we were clearly unable to present any clear answer, but perhaps the considerations
about robustness and sensitivity will allow other researchers for a more specific search
for or against chaos in biology.
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Abstract

We present a general introduction to synchronization phenomena in nonlinear systems. The notion of self-
sustained oscillators is introduced, and effects of phase locking and frequency entrainment are described
and illustrated with examples. Different types of synchrony in chaotic systems are also outlined.

Zusammenfassung

In diesem Artikel werden Synchronisationsphdnomene in nichtlinearen Systemen diskutiert und zusammen-
gefait. Die periodischen selbsterregten Schwingungen lassen sich durch die Phasendynamik charakterisie-
ren. Durch eine Wechselwirkung bzw. duflere Kraft kann die Phase eingefangen werden, was zum Synchro-
nisationszustand fiihrt. Fiir chaotische Systeme 146t sich die Phase nicht eindeutig definieren, trotzdem ist es
moglich, phasensynchronisierte Zustinde experimentell zu beobachten. Die vollstindige Synchronisation
chaotischer Systeme wird auch beschrieben.

1. Introduction

Many natural and human-made nonlinear oscillators exhibit the ability to adjust their
rhythms due to weak interaction: two lasers, being coupled, start to generate with a com-
mon frequency; cardiac pacemaker cells fire simultaneously; violinists in an orchestra
play in unison. Such coordination of rhythms is a manifestation of a fundamental non-
linear phenomenon — synchronization. Discovered in 17th century by Christiaan Huy-
GENS, it was observed in physics, chemistry, biology, and even social behavior, as well
as found practical applications in engineering and medicine. The notion of synchroniza-
tion has been recently extended to cover the adjustment of rhythms in chaotic systems,
large ensembles of oscillating units, rotating objects, continuous media, etc. In spite of
essential progress in theoretical and experimental studies, synchronization remains a
challenging problem of nonlinear sciences (for details and further references see PIKovs-
KY et al. 2000, 2001, MOSEKILDE et al. 2002).

It is important to emphasize that synchronization is an essentially nonlinear effect. In
contrast to many classical physical problems, where consideration of nonlinearity gives a
correction to a linear theory, here the account of nonlinearity is crucial: the phenomenon
occurs only in the so-called self-sustained systems.
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2. Self-Sustained Oscillators

Self-sustained oscillators are models of natural oscillating objects, and these models are
essentially nonlinear. Mathematically, such an oscillator is described by an autonomous
(i.e., without explicit time dependence) nonlinear dynamical system. It differs both from
linear oscillators (which, if a damping is present, can oscillate only due to external forc-
ing) and from nonlinear energy conserving systems, whose dynamics essentially depends
on initial state.

Dynamics of oscillators is typically described in the phase (state) space. Quite often
two state variables suffice to determine unambiguously the state of the system, and we
proceed here with this simplest case. As the oscillation is periodic, i.e., it repeats itself
after the period T, x(#) corresponds to a closed curve in the phase plane, called the limit
cycle. The reason why we distinguish this curve from all others trajectories in the phase
space is thus that it attracts phase trajectories and is therefore called an attractor of the
dynamical system. The limit cycle is a simple attractor, in contrast to a strange (chaotic)
attractor. The latter is a geometrical image of chaotic self-sustained oscillations.

Examples of self-sustained oscillatory systems are electronic circuits used for the
generation of radio-frequency power, lasers, Belousov-Zhabotinsky and other oscillatory
chemical reactions, pacemakers (sino-atrial nodes) of human hearts or artificial
pacemakers that are used in cardiac pathologies, and many other natural and artificial sys-
tems. An outstanding common feature of such systems is their ability to be synchronized.

This ability of periodic self-sustained oscillators is based on the existence of a special
variable, phase ¢. Mathematically, ¢ can be introduced as the variable parameterizing
the motion along the stable limit cycle in the state space of an autonomous continuous-
time dynamical system. One can always choose the phase proportional to the fraction of
the period, i.e., in a way that it grows uniformly in time,

d¢

dr
where @, is the natural frequency of oscillations. The phase is neutrally stable: its per-
turbations neither grow nor decay. (In terms of nonlinear dynamics neutral stability
means that the phase is a variable that corresponds to the zero Lyapunov exponent of
the dynamical system.) Thus, already an infinitely small perturbation (e. g. external peri-
odic forcing or coupling to another system) can cause large deviations of the phase con-
trary to the amplitude, which is only slightly perturbed due to the transversal stability of
the cycle. The main consequence of this fact is that the phase can be very easily adjusted
by an external action, and as a result the oscillator can be synchronized!

() [1]

3. Entrainment by External Force

We begin our discussion of synchronization phenomena by considering the simplest
case, entrainment of a self-sustained oscillator by external periodic force. Before we de-
scribe this effect in mathematical terms, we illustrate it by an example. We will speak
about biological clocks that regulate daily and seasonal rhythms of living systems —
from bacteria to humans.
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3.1 An Example: Circadian Rhythms

In 1729 Jean-Jacques DORTOUS DE MAIRAN, the French astronomer and mathematician,
who was later the Secretary of the Académie Royale des Sciences in Paris, reported on
his experiments with a haricot bean. He noticed that the leaves of this plant moved up
and down in accordance with the change of day into night. Having made this observa-
tion, DE MAIRAN put the plant in a dark room and found that the motion of the leaves
continued even without variations in the illuminance of the environment. Since that time
these and much more complicated experiments have been replicated in different labora-
tories, and now it is well-known that all biological systems, from rather simple to highly
organized ones, have internal biological clocks that provide their “owners” with informa-
tion on the change between day and night. The origin of these clocks is still a challeng-
ing problem. But it is well established that they can adjust their circadian rhythms
(from circa = about and dies = day) to external signals: if the system is completely iso-
lated from the environment and is kept under controlled constant conditions (constant
illuminance, temperature, pressure, parameters of electromagnetic fields, etc.), its inter-
nal cycle can essentially differ from a 24-hour cycle. Under natural conditions, biologi-
cal clocks tune their rhythms in accordance with the 24-hour period of the Earth’s daily
cycle.

Light - dgtrk (periodic forcing)

Constantconditions (no forcing)

12
6 y - asleep
24

_' awake
18

hours within the day

6 IIIIIIlll
24IIIIII|

1 5 10 15
days

Fig. 1 Schematic diagram of the behavioral sleep-wake rhythm. This cycle (termed circadian rhythm) rep-
resents the fundamental adaptation of organisms to an environmental stimulus, the daily cycle of light and
dark. Here the circadian rhythm is shown entrained for six days by the environmental light-dark cycle and
autonomous for the rest of the experiment when the subject is placed under constant light conditions. The in-
trinsic period of the circadian oscillator is in this particular case larger than 24 hours. Correspondingly, the
phase difference between the sleep-wake cycle and daily cycle increases: the internal “day” begins later and
later. Such plots are typically observed in experiments with both, animals and humans (see, e. g., ASCHOFF
et al. 1982, CZEISLER et al. 1986, MOORE 1999).
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Experiments show that for most people the internal period of biological clocks differs
from 24 h, but it is entrained by environmental signals, e.g. illuminance, having the
period of the Earth’s rotation (Fig. 1); see also the discussion of circadian oscillations
of specific biological systems in the contributions by M. MITTAG and U. RASCHER, both
in this volume. Obviously, the action here is unidirectional: the revolution of a planet
cannot be influenced by mankind (yet); thus, this case constitutes an example of syn-
chronization by an external force. In usual circumstances this force is strong enough to
ensure perfect entrainment; in order to desynchronize a biological clock one can either
travel to polar regions or go caving. It is interesting that although normally the period of
one’s activity is exactly locked to that of the Earth’s rotation, the phase shift between the
internal clock and the external force varies from person to person: some people say that
they are “early birds” whereas others call themselves “owls”.

Perturbation of the phase shift strongly violates normal activity. Every day many peo-
ple perform such an experiment by rapidly changing their longitude (e.g. crossing the
Atlantic) and experiencing jet lag. It can take up to several days to reestablish a proper
phase relation to the force; in the language of nonlinear dynamics one can speak of dif-
ferent lengths of transients leading to the stable synchronous state. As other commonly
known examples of synchronization by external force we mention radio-controlled
clocks and cardiac pacemakers.

3.2 Phase Dynamics of a Forced Oscillator

For mathematical treatment of synchronization, we recall that the phase of an oscillator
is neutrally stable and can be adjusted by a small action, whereas the amplitude is stable.
This property allows description of the effect of small forcing/coupling within the frame-
work of the phase approximation. Considering the simplest case of a limit cycle oscilla-
tor, driven by a periodic force with frequency w and amplitude ¢, we can write the equa-
tion for the perturbed phase dynamics in the form

Z_{p = wy + eQ(p, i), (2]

t

where the coupling function Q depends on the form of the limit cycle and of the forcing.
As the states with the phases ¢q and ¢ + 27 are physically equivalent, the function Q is
2n-periodic in its both arguments, and therefore can be represented as a double Fourier
series. If the frequency of the external force is close to the natural frequency of the os-
cillator, @ ~ @,, then the series contains fast oscillating and slow varying terms, the
latter can be written as g(¢ — wt). Introducing the difference between the phases of the
oscillation and of the forcing w = ¢ — wt and performing an averaging over the oscilla-
tion period we get rid of the oscillating terms and obtain the following basic equation for
the phase dynamics:

dv _
dr

Function ¢ is 2n-periodic, and in the simplest case, ¢(-) = sin(-), Equation [3] is called
the Adler equation. One can easily see that on the plane of the parameters of the external

—(@ —wo) + eq(y). [3]
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forcing (w, ¢) there exists a region &gmin < W — Wy < €@max, Where Equation [3] has a
stable stationary solution. This solution corresponds to the conditions of phase locking
(the phase ¢ just follows the phase of the force, he. ¢ = wt + constant) and frequency
entrainment (the observed frequency of the oscillator Q = (p) exactly coincides with
the forcing frequency w; brackets ( ) denote time averaging).

Generally, synchronization is observed for high-order resonances nw ~ mam as well.
In this case the dynamics of the generalized phase difference w = mgp — nowt, where n, m
are integers, is described by an equation similar to Equation [3], namely by
d(y)/dt = — (nw — mawg) + eq(y). Synchronous regime then means perfect entrainment of

the oscillator frequency at the rational multiple of the forcing frequency, Q = n w, as
m

well as phase locking mg = nowt + constant. The overall picture can be shown on the
(o, &) plane: there exist a family of triangular-shaped synchronization regions touching

the w-axis at the rationals of the natural frequency — w, these regions are usually called
n

Arnold tongues (Fig. 2 A). This picture is preserved for moderate forcing, although now
the shape of the tongues generally differs from being exactly triangular. For a fixed am-
plitude of the forcing ¢ and varied driving frequency @ one observes different phase

w

& g p 231 121 2:8 1:2 3
R A A B s
: \/\/
o
(@)
=
8 J 1 ! T >
2 /2 @y 3wy/2 2a, 3wy

forcing frequency
B

el e

@/2 @, 3wy/2 2a 30
forcing frequency o

frequency ratio Q/m

Fig.2 (A) Family of synchronization regions, or Arnold tongues (schematically). The numbers on top of
each tongue indicate the order of locking; e. g., 2 : 3 means that the relation 2 = 322 is fulfilled. (B) The £/
w versus o plot for a fixed amplitude of the force (shown by the dashed line in (A)) has a characteristic
shape, known as the devil’s staircase. (In this scheme the variation of the frequency ratio between the main
plateaus of the staircase is not shown.)
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locking intervals where the motion is periodic, whereas in between them it is quasiperi-
odic. The curve Q versus  thus consists of horizontal plateaus at all possible rational
frequency ratios; this fractal curve is called devil’s staircase (Fig. 2 B). A famous exam-
ple of such a curve is the voltage-current plot for a Josephson junction in an ac elec-
tromagnetic field; in this context synchronization plateaus are called Shapiro steps (SHA-
PIRO 1963). Note that a junction can be considered as a rotator (rotations are maintained
by a dc current); this example demonstrates that synchronization properties of rotators
are very close to those of oscillators (PIKOVSKY et al. 2001).

Finally, we note that the phase difference in the synchronous state is not necessarily
constant, but may oscillate around a constant value. Indeed, a solution mg — nwt = con-
stant was obtained from Equation [2] by means of averaging, i.e. by neglecting the fast
oscillating terms. If we take this terms into account, then we have to reformulate the
condition of phase locking as | m¢ — nwt | < constant. Thus, in the synchronous regime
the phase difference is bounded, otherwise it grows infinitely.

3.3 Synchronization versus Resonance

At this point we would like to underline the difference to another phenomenon, well-
known for oscillatory systems — the resonance. Resonance is a response of a system that
is non-active, i. e., demonstrates no oscillations without external driving. In other words,
here one cannot speak of an adjustment of intrinsic oscillations to an external force, as
this force is the source of the oscillations. In the case of resonance, if the force is
switched off, the oscillations disappear, while self-sustained oscillations continue to ex-
ist even without forcing.

As a simple example of this difference let us consider radio-controlled clocks and
older railway station clocks. Radio-controlled clocks are self-oscillating, they continue
to show time even if there is no radio signal from the high-precision center. The role of
the latter is only to adjust — to correct — the oscillations in order to synchronize them
with the time standard. The railway station clocks receive signals from a central clock,
and if these signals are absent they stop; this is an example of resonance, not of synchro-
nization.

Sometimes, when a system is forced very strongly and operates in a highly nonlinear
regime, it is hard to distinguish between synchronization and resonance (especially if
one can hardly control the forcing like for circadian rhythms), here the observed fea-
tures at the resonance may be very close to those at the synchronization (e. g., one can
observe the devil’s staircase-like dependence on the forcing frequency). Nevertheless,
the difference becomes evident if the forcing is reduced or switched off.

4. Two and More Oscillators

4.1 Phase Dynamics of Two Coupled Oscillators

Synchronization of two coupled self-sustained oscillators can be described in a similar
way. A weak interaction affects only the phases of two oscillators ¢; and ¢,, and Equa-
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Fig. 3 Two coupled oscillators may be synchronized almost in-phase, i.e., with the phase difference ¢, —
¢1 =~ 0 (A), or in anti-phase, when ¢, — ¢p; ~ 7(B), in dependence on how the coupling was introduced. The
discoverer of synchronization, Christiaan HUYGENS, observed synchronization in anti-phase. Later experi-
ments, reported in BLEKHMAN (1981) demonstrated that both anti-phase and in-phase synchronous regimes
are possible.

tion [1] generalizes to

D 10100 =+ Qe [
t dt

For the phase difference w = ¢, — ¢p; one obtains after averaging an equation of the type
of Equation [3]. Synchronization now means that two non-identical oscillators start to
oscillate with the same frequency (or, more generally, with rationally related frequen-
cies). This common frequency usually lies between w; and w,. It is worth mentioning
that locking of the phases and frequencies implies no restrictions on the amplitudes, in
fact the synchronized oscillators may have very different amplitudes and waveforms
(e. g., oscillations may be relaxation [pulse-like] or quasiharmonic).

We conclude the discussion of mutual synchronization of two coupled systems with
two remarks. (i) Similar to the case of periodic forcing, synchronization of the order n: m
is also possible. Examples are synchronization of running and breathing in mammals and
locking of breathing and wing beat frequencies in flying birds (see PIKOVSKY et al. 2001
for citations and further examples). (ii) Depending on the parameters of coupling two
oscillators can be locked almost in-phase or almost in anti-phase (Fig. 3). Moreover,
varying the parameters of coupling one can observe transition between different synchro-
nous states. As an example we mention the effect observed by J. A. S. KELSO and later
studied by HAKEN, KELSO and co-workers (see HAKEN et al. 1985, HAKEN 1999 for
references and details). In their experiments, a subject was instructed to perform an
anti-phase oscillatory movement of index fingers and gradually increase the frequency.
It turned out that at higher frequency this movement becomes unstable and a rapid tran-
sition to the in-phase mode is observed.

4.2 Globally Coupled Oscillators

Now we study synchronization phenomena in large ensembles of oscillators, where each
element interacts with all others. This is usually denoted as global, or all-to-all coupling.
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As a representative example we mention synchronous flashing in a population of fire-
flies. A very similar phenomenon, self-organization in a large applauding audience, has
probably been experienced by every reader of this article, e. g. in a theater. Indeed, if the
audience is large enough, then one can often hear a rather fast (several oscillatory peri-
ods) transition from noise to a rhythmic, nearly periodic, applause. This happens when
the majority of the public applaud in unison, or synchronously.

The each-to-each interaction is also denoted as mean field coupling. Indeed, each
firefly is influenced by the light field that is created by the whole population. Similarly,
each applauding person hears the sound that is produced by all other people in the hall.
Thus, we can say that each element is exposed to a force that comes to it from all others
by one input from the whole ensemble. Let us denote these outputs of elements by x;(?),
where k =1, . . ., N is the index of an oscillator, and N is the number of elements in the
ensemble; x can be variation of light intensity or of the acoustic field around some aver-
age value, or, generally, any other oscillating quantity. Then the force that drives each
oscillator is proportional to Y, x.(¢). It is conventional to write this proportionality as
eN! >k xi(f), so that it includes the normalization by the number of oscillators N. The
term N> x4(¢) is just an arithmetic mean of all oscillations, what explains the origin
of the term “mean field coupling”.

Thus, the oscillators in a globally coupled ensemble are driven by a common force.
Clearly, this force can entrain many oscillators if their frequencies are close. The prob-
lem is that this force (the mean field) is not predetermined, but arises from interaction
within the ensemble. This force determines whether the systems synchronize, but it
itself depends on their oscillation — it is a typical example of self-organization (HAKEN
1993). To explain qualitatively the appearance of this force (or to compute it, as is done
in KurAMOTO 1984, PIKOVSKY et al. 2001) one should consider this problem self-consist-
ently.

First, assume for the moment that the mean field is zero. Then all the elements in the
population oscillate independently, and their contributions to the mean field nearly can-
cel each other. Even if the frequencies of these oscillations are identical, but their phases
are independent, the average of the outputs of all elements of the ensemble is small if
compared with the amplitude of a single oscillator. (According to the law of large num-
bers, it tends to zero when the number of interacting oscillators tends to infinity; the
fluctuations of the mean field are of the order N/ 2.) Thus, the asynchronous, zero mean
field state obeys the self-consistency condition.

Next, to demonstrate that synchronization in the population is also possible, we sup-
pose that the mean field is non-vanishing. Then, naturally, it entrains at least some part
of the population, the outputs of these entrained elements sum up coherently, and the
mean field is indeed nonzero, as assumed. Which of these two states — synchronous or
asynchronous — is realized, or, in other words, which one is stable, depends on the
strength of interaction between each pair and on how different the elements are. The
interplay between these two factors, the coupling strength and the distribution of the
natural frequencies, also determines how many oscillators are synchronized, and,
hence, how strong the mean field is.

We discuss now how the synchronization transition occurs, taking the applause in an
audience as an example (experimental study of synchronous clapping is reported in
NEDA et al. 2000). Initially, each person claps with an individual frequency, and the
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sound they all produce is noisy.! As long as this sound is weak, and contains no charac-
teristic frequency, it does not essentially affect the ensemble. Each oscillator has its own
frequency @y, each person applauds and each firefly flashes with its individual rate, but
there always exists some value of it that is preferred by the majority. Definitely, some
elements behave in a very individualistic manner, but the main part of the population
tends to be “like the neighbor”. So, the frequencies w; are distributed over some range,
and this distribution has a maximum around the most probable frequency. Therefore,
there are always at least two oscillators that have very close frequencies and, hence, eas-
ily synchronize. As a result, the contribution to the mean field at the frequency of these
synchronous oscillations increases. This increased component of the driving force natu-
rally entrains other elements that have close frequencies, this leads to the growth of the
synchronized cluster and to a further increase of the component of the mean field at a
certain frequency. This process develops (quickly for relaxation oscillators, relatively
slow for quasilinear ones), and eventually almost all elements join the majority and os-
cillate in synchrony, and their common output — the mean field — is not noisy any more,
but rhythmic. Of course, the synchronization process as described above is not uncon-
scious but depends on the intentions of the audience: in some countries a non-synchro-
nous clapping is preferred, then even a lasting clapping does not synchronize.

The physical mechanism we described is known as the Kuramoto self-synchroniza-
tion transition (KURAMOTO 1975). The scenario of this transition does not depend on
the origin of the oscillators (biological, electronic, etc.) or on the origin of interaction.
In the above presented examples the coupling occurred via an optical or acoustic field.
Global coupling of electronic systems can be implemented via a common load; in this
case the voltage applied to individual systems depends on the sum of the currents of all
elements. (As an example we mention an array of Josephson junctions.) Chemical oscil-
lators can be coupled via a common medium, where concentration of a reagent depends
on the reaction in each oscillator and, on the other hand, influences these reactions. The
Kuramoto transition can be treated as a non-equilibrium phase transition, the mean oscil-
lating field serving as an order parameter.

The scenarios of the Kuramoto transition may be also more complicated, e. g., if the
distribution of the individual frequencies w; has several maxima. Then several synchro-
nous clusters can be formed — they can eventually merge or coexist. Clustering can also
happen if, say, the strength of interaction of an element of the population with its nearest
(in space) neighbors is larger than with those that are far away.

5. Chaotic Systems

Nowadays it is well-known that self-sustained oscillators, e. g., nonlinear electronic de-
vices, can generate rather complex, chaotic signals. Most oscillating natural systems also

1 Naturally, the common (mean) acoustic field is nonzero, because each individual oscillation is always
positive; the intensity of the sound cannot be negative, it oscillates between zero and some maximal value.
Correspondingly, the sum of these oscillations contains some rather large constant component, and it is
the deviation from this constant that we consider as the oscillation of the mean field and that is small.
Therefore, the applause is perceived as some noise of almost constant intensity.
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exhibit rather complex behavior. Recent studies have revealed that such systems, being
coupled, are also capable to undergo synchronization. Certainly, in this case we have to
specify this notion more precisely, because it is not obvious, how to characterize the
rhythm of a chaotic oscillator. It is helpful that sometimes chaotic waveforms are rather
simple, so that a signal is “almost periodic”; we can consider it as consisting of similar
cycles with varying amplitude and period (which can be roughly defined as the time
interval between the adjacent maxima). Taking a large time interval N, we can count
the number of cycles within this interval N, compute the mean frequency and take it for
characterization of the chaotic oscillatory process.

wo = lim 27z%. [5]
T—00 T
With the help of the mean frequencies we can describe the collective behavior of inter-
acting chaotic systems in the same way as we did it for periodic oscillators. If the cou-
pling is large enough (e. g., in the case of resistively coupled electronic circuits it means
that the resistor should be sufficiently small), the mean frequencies of two oscillators
become equal, and one can obtain the synchronization region, exactly as in the case of
periodic systems. It is important that coincidence of mean frequencies does not imply
that the signals coincide as well. It turns out that weak coupling does not affect the chaot-
ic nature of both oscillators; the amplitudes remain irregular and uncorrelated; whereas
the frequencies are adjusted in a fashion that allows us to speak of the phase shift be-
tween the signals. This regime is denoted as phase synchronization of chaotic systems.
Very strong coupling tends to make the states of both oscillators identical. It influ-
ences not only the mean frequencies but also the chaotic amplitudes. As a result, the
signals coincide (or nearly coincide) and the regime of complete synchronization sets
in. Known are also the so-called generalized and master slave synchronization (see,
e.g. PIkovsky et al. 2001 and references therein); these effects are related to the com-
plete synchronization of chaos.

5.1 Phase Synchronization. An Example: Electrochemical System

Phase synchronization of chaotic systems is mostly close to the classical locking phe-
nomena. It is based on the observation that many chaotic self-sustained oscillators admit
determination of the instantaneous phase and the corresponding mean frequency. Below
we illustrate this with an electrochemical oscillator, experimentally investigated by Kiss
and HupsoN (Kiss et al. 2001). An autonomous system demonstrates chaotic dynamics.
The strange attractor looks like a smeared limit cycle; this allows one to introduce the
phase as a variable that gains 27 with each rotation of the phase space trajectory, and to
calculate frequency according to Equation [5].

Having introduced the phase and the frequency for chaotic oscillators we can charac-
terize their synchronization. Now it becomes rather obvious that the effects of phase
locking and frequency entrainment, known for periodic self-sustained oscillators, can
be observed for chaotic systems as well. The simplest ease is the phase locking by an
external periodic signal. When the electrochemical oscillator is driven by a signal with
a frequency Q close to @, the forcing affects the evolution of the phase, and the ob-
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Fig. 4 The synchronization region for the periodically driven chaotic oscillator on the plane “amplitude of
the driving — frequency of the driving” (Kiss et al. 2001).

served (mean) frequency o becomes adjusted to the external one. The results of the ex-
periment for different amplitudes of the forcing allow one to define the synchronization
region, where the frequency of the system is completely entrained by the external force,
see Figure 4. This region is a complete analog of synchronization regions (Arnold
tongues) for periodic oscillators.

It is important to emphasize that the chaos itself is not suppressed by the external
force. What happens is not a disappearance of chaos, but an adjustment of the mean
oscillation frequency. Chaos may be destroyed by a strong force, but a small forcing
affects only the phase, entraining the frequency of its rotation.

Mutual phase synchronization of chaotic oscillators is also quite similar to the classical
case. To demonstrate this, one can couple two chaotic electrochemical oscillators. Then
the calculation of the observed frequencies €2;, €2, characterizes the entrainment. For
large enough coupling and for small mismatch of natural frequencies one observes that
frequencies becomes equal, 2| = ,, like in the experiments with periodic oscillators.

5.2 Complete Synchronization
Strong mutual coupling of chaotic oscillators leads to their Complete Synchronization
when two or more chaotic systems have exactly the same states, and these identical

states vary irregularly in time. Contrary to phase synchronization, it can be observed in
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any chaotic system, not necessarily autonomous, in particular in periodically driven os-
cillators or in discrete time systems (maps). In fact, this phenomenon is not close to the
classical synchronization of periodic oscillations, as here we do not have adjustment of
rhythms. Instead, complete synchronization means suppression of differences in coupled
identical systems. Therefore, this effect cannot be described as entrainment or locking; it
is closer to the onset of symmetry. Maybe another word instead of “synchronization”
would better serve for underlining this difference; we will follow the nowadays accepted
terminology, using the adjective “complete” to avoid ambiguity.

The main precondition for complete synchronization is that the interacting systems
are identical, i. e., they are described by exactly the same equations of motion. This iden-
tity implies that if the initial states of these systems are equal, then during the evolution
they remain equal at all times. However, in practice this coincidence of states will be
realized only if such regime is stable, i.e., if it is restored after a small violation. This
imposes a condition on the strength of the coupling between the systems.

To be more concrete in our discussion, let us consider the coupled system of the type

i &y L
E*F(X)Jrﬁ(y—f) E*F(Y)+8(x ¥). (6]

Here X and y are two identical systems, described by the same equations F, and we will
assume that the solutions are chaotic. ¢ is the coupling parameter, the corresponding
terms on the right hand sides describe a so-called diffusive coupling, which tends to
equalize the states of two systems (this can be easily seen if one sets F =0, then the
difference y — X decreases in time with the rate 2¢).

While the coupling tends to equalize the states of two systems, another mechanism
prevents this. This mechanism is the sensitive dependence to initial conditions, inherent
for chaos. Suppose that ¢ = 0, then we have two uncoupled identical systems; they can be
regarded as two realizations of one system with different initial conditions. Because
chaotic motions sensitively depend on initial conditions (this phenomenon is often
called the “Butterfly Effect”), the values y(r) and x(¢) will differ significantly after some
time, even if ¥(0) =~ x(0).

Summarizing, we see two counter playing tendencies in the diffusive interaction of
two identical chaotic systems: intrinsic chaotic instability tends to make the states of
the systems different, while coupling tends to equalize them. As a result, there exists a
critical value of coupling such that for stronger coupling a completely synchronized state
¥(t) = x(¢) sets on. At this regime the coupling term in [6] vanishes, and, hence, each of
the systems varies chaotically in time as if they were uncoupled. Thus, the complete
synchronization is a threshold phenomenon: it occurs only when the coupling exceeds
some critical level, proportional to the largest Lyapunov exponent of the individual sys-
tem. Below the threshold, the states of two chaotic systems are different but close to each
other.

6. Conclusions and Outlook

In spite of the long history, theory of synchronization remains a rapidly developing
branch of nonlinear science. Among the ongoing directions, not discussed in this arti-
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cle, we mention synchronization in spatially-distributed systems and synchronization-
like phenomena in stochastic and excitable systems (ANISHCHENKO et al. 2002).

Recent theoretical development was strongly influenced by interdisciplinary studies,
especially by widely growing applications to biological and medical problems. It turned
out that synchronization is very frequently encountered in live systems (Grass 2001,
Pixovsky et al. 2001). In particular, it is believed that the mechanism of the Kuramoto
transition plays an important role in dynamics of neural ensembles and is responsible for
the emergence of such severe pathologies as epilepsies and Parkinson disease. A popular
paradigmatic model, analyzed in this context, is a system of pulse-coupled integrate-and-
fire oscillators (see e. g. MIROLLO and STROGATZ 1990). Another direction of research is
related to attempts to desynchronize undesirable, pathological collective rthythms and to
develop in this way a therapeutic tool (TAss 1999).

Finally we mention that ideas from the synchronization theory are used in analysis of
multivariate experimental data. The goal of such an analysis is to detect weak interaction
between oscillatory systems, e. g. to reveal a coordination between respiratory and cardi-
ac rhythms in humans (SCHAFER et al. 1998) or localize the source of pathological brain
activity in Parkinson disease (TASS et al. 1998, 2003).
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Active Amplification in Hearing

Frank JULICHER (Dresden)

With 3 Figures

Abstract

In a quiet environment, the ears of many vertebrates emit so-called spontaneous otoacoustic emissions as
manifestations of active processes in the inner ear. It has been suggested that the ear employs active dynami-
cal systems self-tuned to the critical point of an oscillating instability. It has recently been discovered that
hair bundles, which are the mechanosensitive elements of sensory hair cells in the bull frog’s sacculum, have
the ability to oscillate spontaneously. In the presence of noise, the bifurcation disappears and is concealed
by the noise, however, the principal signatures remain, such as frequency selectivity and nonlinear response.
Furthermore, the amount of violation of the fluctuation-dissipation theorem can be quantified.

Zusammenfassung

In einer ruhigen Umgebung senden die Ohren vieler Wirbeltiere sogenannte spontane otoakustische Emis-
sionen als Anzeichen aktiver Prozesse im Innenohr aus. Es wird vermutet, daf3 das Ohr aktive dynamische
Systeme besitzt, die durch einen Selbstregulationsmechanismus an den kritischen Punkten einer oszillieren-
den Instabilitéit gebracht werden. Kiirzlich ist entdeckt worden, da3 Haarbiindel, welche die mechanosensiti-
ven Elemente der Sinneshaarzellen im Sacculum des Ochsenfroschs sind, spontan oszillieren konnen. Bei
Vorhandensein von Fluktuationen verschwindet die Bifurkation und wird durch das Rauschen verdeckt. Die
Hauptkennzeichen, wie die Frequenzselektivitdt und die nicht lineare Antwort, bleiben bestehen. Auflerdem
kann das Ausmaf der Verletzung des Fluktuationsdissipationstheorems quantitativ bestimmt werden.

1. Introduction

The task to detect sounds of the outside world imposes stringent demands on the design
of the inner ear, where acoustic stimuli are transduced to electrical signals (HUDSPETH
1989). The cochlea contains highly specialized cells called hair cells, which act as mech-
anosensors. Each of these cells is responsive to a particular frequency component of
the auditory input. Moreover, these sensors need extraordinary sensitivity, since the
weakest audible sounds impart an energy, per cycle of oscillation, which is no greater
than that of thermal noise (DE VRIES 1949). At the same time, they must operate over a
wide range of volumes, responding and adapting to intensities which vary by many or-
ders of magnitude. In order to achieve this goal, non-linear amplification is necessary.
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The familiar resonant gain of a passive elastic system is far from sufficient for the re-
quired demands, because of the heavy viscous damping at microscopic scales (GOLD
1948). The ear relies on active systems to achieve exquisite sensitivity and sharp fre-
quency selectivity (DALLOS 1992, HUDSPETH 1997, GoLD 1948). The most striking evi-
dence for active behaviors in the ear are so-called otoacoustic emissions which are
emitted sounds from the ears of mammals, birds and amphibians (PrROBST 1990). It has
recently been proposed that the cochlea contains active dynamical systems which are
close to the critical point of a Hopf bifurcation (CHOE et al. 1998, CAMALET et al.
2000, EcuiLuz et al. 2000). Proximity to the bifurcation can in general be achieved by
a self-tuning mechanism (CAMALET et al. 2000). This concept can explain many of the
observed features of the ear, in particular the nonlinearities that are generally observed at
resonance conditions (RUGGERO et al. 1997), the interference effects of multiple frequen-
cies (JULICHER et al. 2001) as well as the occurrence of spontaneous emissions. While
this concept seems to apply essentially to all vertebrate ears, the question of what are the
underlying specific mechanisms at the origin of spontaneous oscillations is a subject of
active research.

While in mammals, it is widely thought that outer hair cells are the active elements
(DaLLos 1992) and thus might contain mechanical oscillators, no spontaneous oscilla-
tions have so far been observed. However, in the case of frogs it was discovered that
hair bundles of the hair cells themselves could oscillate (MARTIN and HUDSPETH 1999,
MARTIN et al. 2000). The observed noisy oscillations exhibit the signature of a system
near a Hopf bifurcation: The response to periodic stimuli was nonlinear for sufficiently
large amplitudes near the oscillation frequency (MARTIN and HupspeTH 2001). For
small amplitudes, there was a linear response regime which exhibited stable behav-
iors. Comparing the linear response to the autocorrelation function it was shown that
the fluctuation dissipation theorem was violated, indicative for an active system (MAR-
TIN et al. 2001).

The hair bundles of vertebrate hair cells consist of about 50 stereocilia which are stiff,
rod-like extensions of the cell with a length of several micron and a diameter of about
300 nm, see Figure 1 (HUDSPETH 1997). The stereocilia merge at the tip and are grouped
in a bundle. Fine filaments, so-called tip-links form bridges between neighboring stereo-
cilia (KACHAR et al. 2000). The micromechanical properties of hair bundles in living hair
cells can be rich and range from adaptation (slow relaxation involving active elements)
(HowarDp and HUDSPETH 1988), twitches (rapid active motion) to spontaneous oscilla-
tions (HUDSPETH 1997, MARTIN and HUDSPETH 1999, FETTIPLACE et al. 2001, MARTIN
and HupspeTH 2001).

2. Generic Behaviors near a Hopf Bifurcation

What are the properties that make an oscillatory instability suitable for detection? A dy-
namical system which is tuned to the proximity of a Hopf bifurcation has very general
properties and exhibits a compressive nonlinearity. This compressive nonlinearity per-
mits the system to operate over 6 orders of magnitude in sound pressure. In order to
discuss this, first consider the Van der Pol oscillator which is a standard model for non-
linear oscillators (VAN DER PoL 1926, STRATONOVICH 1967, NAYFEH and Mook 1979,
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Fig. 1  Schematic representation of the hair bundle, the sensitive element of mechanosensory hair cells. It
consists of 10-50 rod-like stereocilia which have a length of 1-10 um and are connected by fine filaments,
called tip-links. The stereocilia contain ion channels which open as a result of mechanical stimulation.

HANGGI and RISEBOROUGH 1983). Consider the dynamic equation
PR+ (€4 AX%) k + kx = fux(D); (1]

which represent a damped oscillator with additional nonlinear friction. Here X is a dis-
placement variable and f,, an external force. y, k and A are positive while € can become
negative.

In the absence of external forces, the system is stable for ¢ > 0. It shows damped
oscillations or is overdamped, and relaxes to x = 0. For € = 0, the system becomes un-
stable and undergoes a Hopf bifurcation. For € < 0 spontaneous oscillations are gener-
ated. In this regime the nonlinearity characterized by /A is essential to stabilize the sys-
tem and to determine the oscillation amplitude. In the periodic limit cycle for f,,, = 0, we
can write

x(t) = 3 x,e" " [2]

as a Fourier sum with oscillation frequency w. Close to the bifurcation point, i.e. for
small but negative ¢, the first Fourier mode x; dominates and obeys to lowest order

Ax; + Blx; P x; =0. [3]

Here, higher modes x,, ~ x] are neglected and the complex coefficients are given by
A=k-yo* +iwe and B=3Aw. Spontaneous oscillations occur with frequency
w =, = (k/y)""?. This is the only choice for which Equation [3] has a solution for
which the oscillation amplitude
A__ 9

= -2

B~ 34k 4]
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Fig. 2 Fourier amplitude Ix;| of the response of a dynamical system at a Hopf bifurcation to a stimulus
force of amplitude If;| at different frequencies. The data is obtained by a numerical solution of the model de-
scribed in the subsequent section, see CAMALET et al. (2000). The power law of the response is indicated.

is real and positive. The bifurcation point € = 0 is characterized by the condition that
A =0 vanishes at the critical frequency o = ..

Important for sound detection are the mechanical response properties of the oscillator
in presence of a periodic stimulus foy, = ;" + f_1¢"". For simplicity, we assume that
only one frequency is present. Equation [3] then becomes

f1 =.AX1+ B')C] |2)C1. [5]

While the van der Pol oscillator is a particular choice of a dynamic oscillator, it is im-
portant to note that the expressions given in Equations [3] and [5] are generic and de-
scribe the mechanical response to any oscillating system in the vicinity of a Hopf bifur-
cation if it is stimulated at a frequency close to the oscillation frequency. In this case, we
replace € by an arbitrary control parameter C, and the linear coefficient A(w, C) is writ-
ten as a function of C and w. At the critical point, the control parameter takes a critical
value C = C. and A vanishes for a critical frequency. We can therefore expand in gener-
al:

Ao, C) ~ a(w — w.) + p(C - C,). [6]

The van der Pol oscillator is characterized by C=¢, C. =0, a =2yw, and ff = iw.

In order to illustrate the generic mechanical response we focus on the case where
C = C,, and the system is exactly at the bifurcation. Two different regimes of the
response to an oscillating force can be distinguished, see Figure 2. If the applied
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frequency is close to the critical frequency, the linear term can be ignored and

13
e 18 L A
Pei| >~ Bl A > 7(3/1600)1/3 [7]

If the frequency mismatch is larger, | — w.|>>|fi |2/ 31B|'"?/|al, the cubic term is
unimportant and the response becomes linear

ol = 14l = 0L 81

(@ — )|

The response of the system given by Equation [5] together with the oscillation amplitude
[4] characterizes the main properties of an oscillator near the bifurcation point. This ap-
proach can be generalized to situations where more than one frequency is present (JULI-
CHER et al. 2001).

3. Spontaneous Hair Bundle Oscillations

Spontaneous hair bundle oscillations have been observed experimentally in the sacculus
of the frog (FETTIPLACE et al. 2001, MARTIN and HUDSPETH 1999, MARTIN et al. 2000).
The observed noisy oscillations can be characterized for small amplitudes by a linear
description. We write a dynamic equation for the hair bundle deflection x (MARTIN et
al. 2001)

d
)»j); = —kx + F, + fexi + nx + nonlinear terms; 9]

where 4 and k are an effective friction and stiffness, respectively, and where we have not
specified nonlinearities. Note that we do not include a mass term since at the length
scales and frequencies of interest, inertial terms can be ignored. The force F, is an in-
ternally generated force due to active phenomena and active elements such as motor
proteins or ion channels, while # is a noise of zero average describing fluctuations both
of thermal origin and due to active processes. The system is stimulated by a periodic
external force f.. It can oscillate spontaneously, if the active force F, itself relaxes and
provides a positive feedback to x. We therefore write

1 dFy
dt

Here, r is a relaxation rate of the active process and the coupling coefficient k has dimen-
sions of a spring constant. Note, that the combined equations for x and F, represent an
active system and cannot be derived from a potential.

In order to simplify our discussion, we focus on the illustrative case where r = k/A.
Indeed, fitting Equations [9] and [10] to the observed linear response function of a hair
bundle leads to the observation r =~ k/A for this case (MARTIN et al. 2001). Writing
F, = (kk)'? y, where y describes an internal displacement linked to an active process,
we can represent the two degrees of freedom by a single complex variable z = x + iy.
We furthermore add a nonlinearity with complex coefficient B = (b + ib) to stabilize the

= — F, — kx + 1, + nonlinear terms. [10]
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system when it starts to oscillate. We thus arrive at the equation

d

d—j=—(r+iw0)z—BIz2|z+ I o+ 7, [11]
which is a standard representation of nonlinear oscillators. Here, the frequency of oscil-
lations is given by wq = (kk)""*/J.. Noise in this system can be described by the complex

stochastic force 7.

4. Linear Response Function and Hopf Bifurcation

Consider the case where noise is absent, # = 0. The system undergoes a Hopf bifurcation
—inmt

at r = 0 and we identify r with the control parameter C. Writing z(¢) = X,z,e , We can
bring the system into the general form [5]
fi = Ao, r) z; + Biz) z,. [12]

Here, B = /B and A = 7! is related to the Fourier transform of the linear response func-
tion y, defined via

x(t) = / di'y(t — 1) fexd?). [13]

o0

In Fourier representation, it is given by
. 1/2 1/2
x(@

= iMwyg— o) +k  —iMwy— o) +k
If the parameter r changes sign and becomes negative, the system undergoes a Hopf
bifurcation and has limit-cycle solutions with amplitude

b blZ b 1/2
lz1| = (bij’/z> |r|1/2, where B=b +ib! [15]

[14]

5. Autocorrelation Function and Fluctuation Dissipation Theorem

In the presence of noise, the system generates noisy oscillations which can be character-
ized by their autocorrelation function C(f) = <x(#) x(0)>. The noise conceals the Hopf
bifurcation and leads together with the nonlinear terms to a renormalization of the param-
eters. We can still define the linear response function, which is in good approximation of
the form given by Equation [14] if the parameters are replaced by their renormalized
values. Assuming isotropic, Gaussian noise with auto-correlation <#(f) n(0)> = 2D(f),
the auto-correlation function in Fourier representation is of the form:
Clo)w—2@ 1)2( °) [16]
k> 4+ 27 (w — o) K2+ 2 (w + wy)
This is a correlation function characteristic for noisy oscillators with peaks in the spec-
trum at the oscillation frequency.
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From the observation of the spectrum alone, one cannot distinguish between the system
being a noisy spontaneous oscillator or a damped passive oscillator, subject to thermal
fluctuations. In the former case of a passive system near thermal equilibrium, however,
the linear response function is related to the autocorrelation function via a fluctuation-
dissipation theorem (FTD) (FORSTER 1990): C(w) = 2kzT7(w)"lw, where y =y + iy,
i.e. ¥ is the imaginary part of the linear response function. If the system is an active
oscillator, this FDT is broken. We characterize the degree to which the system deviates
from equilibrium by defining the effective temperature for every frequency

Tete () _ oC(w)
T 2kpTy(w)"
In our simple model, we expect for @ =~ @ this to be of the form
Ter D
Zeff o ﬁ < w ) [18]
T AkgT \ o — o,

The linear response function and the auto-correlation function have been measured for
spontaneous hair-bundle oscillations (MARTIN et al. 2001). A fit to the experimental
data leads to k~1.04-107* N/m, A1 ~6.5- 107® Ns/m. The auto-correlation function
could be well described by using Gaussian white noise with D(w)=2D,, with
Doy ~ 0.14 pNs.

[17]

6. Self-tuning

While the properties of a Hopf bifurcation can explain the main properties of sound de-
tection by the ear, it raises a number of important questions. In particular, in order to
exhibit a nonlinear response for small amplitudes, the system has to be tuned with high
precision to its critical point. This requires a fine-tuning of parameters, which raises
doubts as to whether a living cell can profit from the special properties at a critical point
in a reliable way.

A simple and general mechanism to maintain a dynamical system at a point of opera-
tion close to the bifurcation point can be achieved by a feedback regulation of the control
parameter (CAMALET et al. 2000, CAMALET 2001). This self-tuning implies that the con-
trol parameter is regulated toward the instability as long as the system is not sponta-
neously oscillating, while it is automatically stabilized as soon as oscillations are de-
tected. This self-tuning works best in the absence of external stimuli, when highest
sensitivity is needed, by adapting the control parameter C as a function of the detected
amplitude of hair-bundle deflections.

An illustrative example for self-tuning is achieved in a situation where the Ca®* con-
centration in the hair cell plays the role of the control parameter at the bifurcation
(Fig. 3). Since hair-bundle deflections lead to an influx of Ca®* into the hair cell, this
provides for a regulation of the control parameter C of the form

dc C

—r =+ P [19]

where 7 is a relaxation time of the control parameter in the absence of hair bundle de-
flections x. This relaxation drives the system in the oscillatory regime. As soon as deflec-
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Fig.3  Simple self-tuning mechanism (schematic). (A) Regulation of the control parameter C associated
with the concentration of ions such as Ca** which enter the hair cell via transduction channels. A permanent
outflux drives the system toward the oscillating side of the bifurcation, influx of ions via transduction chan-
nels provides a stabilizing feedback. (B) Fourier amplitude lx;| of spontaneous oscillations as a function of
the control parameter near the bifurcation point C.. Self-tuning brings the system to an operating point C:.
(C) Opening probability P,(x) of ion channels as a function of the deflection amplitude x. A signal is gener-
ated for deflections larger than o.

tions x occur, ion channels open with probability
1

PO =T (201

and each open channel gives rise to an influx J of Ca**, which drives the system toward
the non-oscillating regime. Here we assume 7 >> ', i.e., changes in C occur on time-
scales long compared to the oscillation frequency. The length scale J, which for hair
bundles is of the order of 0.3—1 nm, indicates the smallest deflection amplitudes at
which a signal is generated by the hair bundle and the parameter ¢ characterizes the
sharpness of the response.

The self-tuning can now be summarized as follows. In the absence of spontaneous
oscillations (and if no external sound stimulus is present), the control parameter is de-
creased within a relaxation time 7. As soon as the critical point C, is reached, the system
starts to oscillate and the decrease of C is halted as soon as the typical oscillation ampli-
tude is of the order of magnitude d (see Fig. 3). Remember that the onset of spontaneous
oscillations in the absence of a Ijorce given by Equation [4] can be expressed as

c-c\'"*?

Ly _A< c. ) , [21]
where A4 is a characteristic saturation amplitude. We can therefore estimate how close to
the bifurcation point the system will be tuned via this mechanism. Introducing the dis-
tance AC = C, — C from the bifurcation, the self tuning brings the system slightly to the
oscillating side of the bifurcation with

AC/C, ~ (8/4)%. [22]
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For a typical hair cell we estimate d ~ 1 nm and 4 ~ 100 nm, thus the system can self-
tune with 4C/C, ~ 107",

These estimates for the useful amplitude range of hair bundle deflections can also
explain the dynamic range of hearing. In the regime of nonlinear response, the hair cell
can map changes in force amplitude |f|l that vary by a factor of (418)* ~ 10° onto hair
bundle deflections lx;| which vary over the usable range of 4/5. This range of detectable
force amplitudes corresponds to a dynamic range of 120 dB.

7. Discussion

The concept of self-tuning to a Hopf bifurcation can explain seemingly disconnected but
well-known properties of hearing. In addition to providing an explanation for the high
sensitivity at one frequency and a large dynamic range, it can naturally account for what
is called adaptation and fatigue. Fatigue implies that the sensitivity to weak stimuli is
reduced after a subject is exposed to a loud stimulus which is a natural consequence of
self-tuning. In the presence of a stimulus, Equation [19] tunes the system away from the
bifurcation point where sensitivity is reduced. The recovery of high sensitivity after a
strong stimulus only happens after a relaxation time 7 of the self-tuning feedback to its
operation point.

This theory of hearing by a generic mechanism could apply to many different animals
such as mammals, birds, reptiles and amphibians. These classes of animals, however,
have different ears and different types of hair cells and they might thus use different
physical systems to realize a Hopf bifurcation and the self-tuning. In the case of mam-
mals, there is some evidence that so-called outer-hair cells are able to generate active
motion by contracting the whole cell body (DaLLos 1992). Recently, a protein which
could play an active role in these contractions has been identified (ZHENG et al. 2000).
Non-mammalian vertebrates do not possess outer hair-cells. Active oscillators are there-
fore expected to exist within the hair bundle itself. Spontaneous hair bundle oscillations
of amphibian hair-cells have shown that the hair bundle itself could be the active system
(MARTIN and HUDSPETH 1999, MARTIN et al. 2000).

Spontaneous oscillations generated by cells are always noisy and this noise plays an
important role for the detection of weak stimuli. The importance of noise has been dis-
cussed in the context of stochastic resonance (GAMMAITONI et al. 1998, WIESENFELD and
Moss 1995). Near a Hopf bifurcation, there are other aspects of noise which play a role.
In the presence of noise, the Hopf bifurcation is concealed, and noisy spontaneous oscil-
lations cannot strictly be distinguished from noise. The difference between noisy sponta-
neous motion and a periodic stimulus lies mainly in the phase coherence of the stimulus.
This phase coherence also appears in the response on top of a noisy oscillation. The
detection of phase coherence in the nervous signal generated by the hair cells can thus
allow the nervous system to detect weak signals.
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Chaotic Ratchets:
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Quantum
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Abstract

For transport on subcellular down to molecular scales, nonlinear dynamics, noise, and eventually quantum
effects are the relevant physical concepts. In the framework of ratchets, it is studied how these effects con-
spire to generate directed transport in the absence of any external gradient. We analyze some fundamental
physical conditions for directed transport in deterministic chaotic systems, in particular concerning spatial
and temporal (a)symmetries. In the presence of dissipation, we point out the relevant structures of the sys-
tem’s attractors and their basins of attraction. For the Hamiltonian case, we present a sum rule implying that
transport requires a mixed (chaotic and regular) dynamics. Upon quantizing a Hamiltonian ratchet, new phe-
nomena such as tunneling and localization emerge which profoundly alter the classical scenario.

Zusammenfassung

Die fiir Transportphdnomene auf subzelluldren Skalen relevanten physikalischen Konzepte sind nichtlineare
Dynamik, thermische Fluktuationen sowie, im molekularen Bereich, Quanteneffekte. Das Modell der Rat-
sche bietet einen geeigneten Rahmen, das Zusammenspiel dieser Effekte beim Zustandekommen gerichteten
Transports in Abwesenheit duflerer Gradienten zu studieren. Wir untersuchen die allgemeinen physika-
lischen Bedingungen fiir gerichteten Transport bei deterministischen chaotischen Systemen, insbesondere
im Hinblick auf rdumliche und zeitliche Symmetrien und ihre Brechung. Fiir den dissipativen Fall weisen
wir auf die relevanten Strukturen der dynamischen Attraktoren und ihrer Einzugsbassins hin. Fiir den Fall
hamiltonscher Ratschen impliziert eine Summenregel, dafl Transport nur in einem gemischten Phasenraum
(chaotisch und reguldr) moglich ist. Thre Quantisierung erlaubt es, den Einflul von Quanteneffekten wie
Tunneln und Lokalisierung auf gerichteten Transport zu analysieren.

1. Introduction

The relevance of nonlinear dynamics for the formation of complex patterns in biological,
chemical, geophysical and many other systems is well established and studied since dec-
ades by now, as is its role in the recognition of such patterns in perception processes. The
formation and change of spatial patterns, in turn, requires transport processes, typically on
cellular, subcellular through down to molecular scales. It is a relatively recent insight that
nonlinear dynamics plays a fundamental role also here. While pattern formation as such
typically can be described as a macroscopic process (with some notable exceptions in
chemical patterns), the underlying transport involves microscopic physics. Subcellular
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systems are subject to thermal fluctuations. It has been shown that the corresponding
Brownian motion is not just a disturbance but rather an active, constructive element in a
number of biological functions. A prominent example is stochastic resonance, which
forms a crucial ingredient, e. g., in sensual systems (GAMMAITONI et al. 1998). In the same
spirit, Brownian motion “fuels” transport by Brownian motors, specialized molecules ca-
pable of rectifying non-equilibrium noise into directed motion (REIMANN 2002). Going
further down in scale, quantum effects enter the scene. There is no doubt that they are
involved in binding and unbinding, in proton transport and electron exchange. The rele-
vance of quantum effects for more specific biological transport processes remains an
open question, since physiological temperature and the strong coupling of functional mol-
ecules to the ambient cell plasm and to “parasitic”’ degrees of freedom within the mole-
cules themselves lead to a rapid decay of quantum coherence. It is clear, however, that
quantum mechanics is the only adequate framework once it comes to artificial transport
systems, mimicking their biological analogues in nanometer-scale semiconductor devices.

The basic physical concepts involved in subcellular transport therefore are nonlinear
dynamics, noise (in space and time), and quantum effects, though close to the classical
limit and mitigated by strong decoherence. A fourth crucial ingredient is symmetry, for
two reasons: On the one hand, directed transport as such already singles out a certain
direction in space, i.e., it breaks reflection symmetry. If the direction of flow is not left
to some contingent initial condition but is predetermined, it must reflect an underlying
asymmetry in the structure of the motor-rail assembly. On the other hand, rotational mo-
lecular motors and the chain molecules serving as rails for their linear cousins are typi-
cally characterized by a discrete rotation or translation invariance, respectively. While in
classical physics, such discrete symmetries or small deviations from them do not make a
big difference, quantum effects are extremely sensitive to them: Suffice to mention co-
herent tunneling, a phenomenon indicating the presence of a precise discrete symmetry,
and Anderson localization, the antagonist of tunneling occurring in disordered systems.
The relevance of these interference effects for nonlinear transport is evident (UTERMANN
et al. 1994, DitTRICH et al. 2001).

Apart from the problems posed by the specific functioning of each individual molecu-
lar motor, the question how directed motion is generated from the interplay of the factors
listed above, and under which basic conditions it can come about, represents a formidable
problem of physics. It is being studied since a few years in the framework of a class of
models designed to reduce the biological diversity to the physically essential: so-called
ratchets. In the following paragraphs, we shall retrace the “evolution” of ratchets towards
reductionist theoretical constructs, abandoning one by one the aspects of noise and dissi-
pation, and ending up with quantum Hamiltonian ratchets. We shall thereby concentrate
on results of our own research, complementing them where necessary to provide a more
comprehensive image. A preview of possible directions of the inverse, holistic reconstruc-
tion of biological reality that is to follow, will be given in the conclusion.

2. Dissipative Chaotic Ratchets

The thermal fluctuations driving Brownian motors are a standard case of a random pro-
cess, tractable in the framework of stochastic differential equations (REIMANN 2002). It
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is tempting, however, to remove this conceptually subtle element from the description,
replacing it by deterministic chaos (JUNG et al. 1996). The motivation for this step is to
study the response of chaotic systems to completely desymmetrized conditions, and to
understand if and how ratchets can function in the absence of random noise.

A model is readily constructed from two elements: A potential periodic in space but
asymmetric under space inversion, and a driving periodic in time. The dynamics is then
given, for example, by the equation of motion [1]

dp / a dx /

iR V(X)”;%b(f_”na E:K(P) (1]
where

V(x) = k(sin x + 2 sin(2x — f5)) [2]

is a periodic yet asymmetric (for finite o and f + nn) potential, and K(p) = p*/2m is the
kinetic energy. The parameter y gives the rate of dissipation: On the corresponding time
scale t4;ss = 1/, the system contracts onto an attractor: a point in phase space (point
attractor), a limit cycle, or a strange attractor. While an individual trajectory has tran-
sients on the scale 74 that need not show any symmetry, the attractors must obey the
same symmetry as the potential, that is, periodicity in space and time. This has profound
consequences for transport: It requires the mean displacement of point attractors, or any
other attractor restricted to a single unit cell, to be “classically quantized”, i.e., be given
by v = wX/T, where X and T are the spatial and temporal periods of the potential, respec-

Fig. 1 Basins of attraction of the dissipative chaotic ratchet, Eqations [1], [2], with exp(—y) = 0.27 and
k =2.5. The basins of attraction of the two coexisting attractors are filled white and black, respectively.
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tively, and w = n,/n,, with n, and n, integer, is a rational winding number. The corre-
sponding projection of the attractor onto the (x, 7)-plane is then invariant under shifts
by n, periods in space and n, periods in time. A finite velocity associated to a given
attractor, however, is not yet sufficient for the system to show overall directed trans-
port. For example, the contribution of that attractor might be compensated by the contri-
bution of a counterpart transporting in the opposite direction. In the presence of several
attractors, which is the typical case, it is required that their basins of attraction (the re-
gion in phase space contracting to a given attractor) be asymmetric, in such a manner
that even an initially unbiased velocity distribution converges to a finite mean velocity.

Basins of attraction form a feature of nonlinear dynamical systems not studied as
intensely as the attractors themselves, but can be just as rich in their spatial structure.
In particular, their boundaries can possess fractal geometry. In this case, not only the
motion on the attractor, but also the selection of one attractor among several coexisting
ones shows a sensitive dependence on the initial conditions. We have found that in deter-
ministic chaotic ratchets, this is the rule rather than the exception (Fig. 1; ACEVEDO et al.
2002). As a consequence, in phase-space regions where basins of attraction strongly mix,
only probabilities for a certain value of transport can be predicted, given by the relative
share of phase-space area of the corresponding attraction basin.

In the case of attractors—point, cycle, or strange—not exceeding the boundaries of a
single unit cell of the potential, an initially localized ensemble will move with the quan-
tized velocity mentioned above, without any spreading. This situation changes radically

6 { 0.639
i— 0.0
5t i { - 0.634
Rl -1.91
X 3t -3.18 ¥
2} U 1445
1t {-5.73
=77,
2 3 4 5 6
k

Fig.2 Bifurcation diagram of the dissipative chaotic ratchet, Eqations [1], [2], at exp(—y) = 0.6, as a func-
tion of the parameter k. The fusion of the attractors across the unit-cell boundaries (cf. Fig. 3 below) occurs
at k = 2.4, giving rise to the onset of transport (black curve). At k = 4.4, the strange attractor collapses into a
cycle with winding number w = —1 (note that here the spatial period is 2p).
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Fig. 3 Crisis of the dissipative chaotic ratchet, Eqations [1], [2], at exp(-y) = 0.4. In (A), at k = 4.1, the
strange attractor is still restricted to a single unit cell, while in (B), at k = 4.2, two lobes have just merged,
connecting the attractor along the entire ratchet. The energy contours of the corresponding system without
damping (continuous lines) show that the merger occurs across a separatrix that forms a natural unit-cell
boundary.

once, as a function of some parameter like the driving amplitude, a strange attractor
merges with its neighbors across the unit-cell boundary (Fig. 2 and 3). The hitherto sep-
arate attractors, one per unit cell, thus join to form a single one that extends along the
entire ratchet. This topological change, called a crisis, opens the way for trajectories to
move freely between unit cells, rendering the motion diffusive instead of ballistic. The
full dynamics is then described by a Fokker-Planck equation, comprising free diffusion
superposed on a mean drift velocity (JUNG et al. 1996) which no longer needs to be
“classically quantized”. Similarly abrupt, but less drastic modifications of transport can
occur as the consequence of minor conformational changes of strange attractors, upon
varying a parameter (MATEOS 2000).

3. Hamiltonian Chaotic Ratchets

3.1 Driven Ratchets

From a fundamental point of view, dissipation is an “emergent phenomenon” that results
from restricting consideration to part of a system which in fact is coupled to additional
degrees of freedom not directly accounted for in the description. Since these invisible
freedoms typically are microscopic ones, dissipation results from assuming a macro-
scopic point of view, and correspondingly disappears upon going to a complete, micro-
scopic description of the system at hand. Surprisingly enough, the question of directed
currents in a Hamiltonian system can arise even on a macroscopic level, for example in
models of hydrodynamic flow in the Earth’s atmosphere (DEL-CASTILLO-NEGRETE
1998).
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So it is legitimate to ask whether the concept of ratchets survives in a Hamiltonian
framework where dissipation is excluded. Its role for the functioning of ratchets is two-
fold: It breaks time-reversal invariance, and it leads to a contraction of phase space. The
first effect can be replaced in a Hamiltonian setting by introducing a time-dependent
external force that is periodic but not symmetric under time reversal (FLACH et al.
2000). For example, one might use the asymmetric function [2], both for the position
and the time dependence of the potential,

V(x,t) = ke(sin x + 2a, sin(2x — f5,)) + xk,(sin t + 2¢, sin(2t — f,)) . [3]

The second modification entailed by a Hamiltonian dynamics — conservation of phase-
space volume — turns out to be more severe. Together with the spatiotemporal periodicity
of the potential it implies a sum rule: Averaged over a unit cell in phase space, and over a
period of the driving in time, transport must vanish identically (DrrTRICH et al. 2000,
ScHANZ et al. 2001). This has profound consequences since it requires, for example,
that in a system with homogeneously chaotic phase space, there can be no transport
whatsoever. Likewise, in an integrable system with a phase space completely foliated
by tori, transport along tori with positive mean momentum will be exactly cancelled by
the contribution of tori with negative mean momentum.

A C

10l
0

Fig. 4 (A) Spatial distribution of the probability density for the continuously driven system, Equation [3],
after 20000 periods showing directed transport to the right. (B) Poincaré section p versus x of a unit cell at
integer times. Panels (C), (D) as (A), (B), but for a kicked Hamiltonian. The single regular island visible in
the lower half of (D) has winding number w = —1. It gives rise to much more pronounced transport (C) than
in (A).
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Is there any loophole left for directed transport? Evidently, it would depend on a persist-
ent inhomogeneity of phase space. This in fact is not the exception but the rule in Ha-
miltonian systems: For most smooth nonlinear potentials, phase space decomposes into
invariant sets, some of them chaotic, some regular, intricately intertwined in a self-simi-
lar manner. The coexistence of regular and chaotic regions in a mixed phase space allows
to escape the verdict for transport mentioned above. For example, the contribution of a
chaotic region can be compensated for by the counterdirected contribution of a regular
island. This is easily achieved in a ratchet with smooth potential where close to the mini-
ma oscillatory motion prevails, while at intermediate energies, motion is chaotic (Fig. 4).
At energies high above the potential’s maxima, motion turns regular again.

Moreover, for the same reasons as pointed out in the previous section, the transport ve-
locity of regular islands underlies a classical quantization condition. By the sum rule, this
quantization has consequences also for the chaotic contribution to transport. In the chaotic
case, however, a diffusive spreading takes place simultaneously. For example, if phase space
comprises just a single regular island surrounded by a chaotic sea, the sum rule reads

0= Achvch+Aregvreg [4]

where A, and A, are their respective areas. As a consequence, one has Ve = =VieoAreo/
A, for the chaotic transport velocity.

3.2 Magnetic Billiards

Imposing an asymmetrically time-dependent external force is in fact not the only way to
break time-reversal invariance in a Hamiltonian system. Another option is to consider
charged particles in a magnetic field. In this case, no driving is needed. On the other
hand, to obtain a chaotic dynamics without external time dependence, space now has to
be extended to at least two dimensions. One class of models, very popular among non-
linear dynamicists, that combine these features are billiards: areas of free space limited
by infinitely high potential walls. The shape of their baselines determines the character
of the motion. In the absence of a magnetic field, trajectories are straight lines (geodes-
ics) that undergo specular reflection where they hit a wall. With a constant magnetic
field perpendicularly intersecting the plane of the billiard, they turn into arcs of circles
with radius r.y. = mvc/gB, the cyclotron radius, where B denotes the field strength, and
m, ¢, v, the mass, charge, and velocity of the particle, respectively. While in the field-free
case, convex or concave sections of the boundary have to be introduced to render the
dynamics chaotic, the curvature of the trajectories themselves suffices in the presence
of the field. It corresponds to an effective concave shape of the boundary if the trajec-
tories are curved towards the walls, and to a convex boundary in the opposite case.

A minimum solution for a magnetic-billiard ratchet therefore is a straight channel with
equidistant straight walls attached perpendicularly to one side of the channel (ACEVEDO et
al. 2002). This system is pseudointegrable (RICHENS and BERRY 1981) and integrable in
the limits of vanishing field, r.y. — oo, and of strong field, r.,. — 0, respectively, and in the
intermediate range shows a similar mixed phase space as discussed above (Fig. 5). Indeed,
the breaking of time-reversal invariance by the field, and of the remaining spatial symme-
try by the asymmetric configuration of the walls, is sufficient to generate directed transport
in the chaotic component of phase space, for all finite values of B (Fig. 6).
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Fig. 5 Phase portraits for various sections of the phase-space unit cell of a magnetic billiard, as shown in the
inset in Figure 6 below, for a unit cell of length / = 1.3, and & = 0.7, r.y. = 0.7, in units of the total width of the
channel. The coordinate s is measured along the circumference of the rectangular unit cell of the billiard (cf.
Fig. 6 below), starting at the lower left corner and continuing counterclockwise. The coordinate p, canonically
conjugate to s, is the sine of the angle between the trajectory and the inward normal of the boundary at a re-
flection. As in Figure 4 D, phase space is dominated by a large regular island immersed in the chaotic sea.

-0.05 :

Vch

f
-0.15 h :
‘ :

-0.2

0 0.2 0.4 0.6 0.8 1
h

Fig. 6 Transport in the chaotic phase-space component of a magnetic billiard for 7.y = 2, with boundary
as sketched in the inset, as a function of the relative length £ of the transverse walls. Transport vanishes in
the limits 7 — 0, where the billiard looses its asymmetry, and & — 1, of complete closure of the channel.
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3.3 Disorder and Noise

Hardly ever in nature are symmetries realized in a perfect manner, except for systems of
atomic or smaller scale. The assumption of spatial and temporal periodicity made above
therefore may appear artificial, and it is in order to consider the consequences of slight
deviations from its exact validity. They can be modeled by superposing the periodic po-
tentials with random functions of appropriate amplitude and autocorrelation properties.

Beginning with static, “frozen” disorder in space, it is immediately clear that a strict
distinction between regular islands restricted to a single unit cell of the potential, and tori
extending over the entire system, will collapse. In fact we now find regular islands ex-
tending over a large but finite number of unit cells, as implied by the large-scale fluctua-
tions of the potential (Fig. 7, ACEVEDO et al. 2002). A trajectory starting in a chaotic
region, say, is then more likely to enter the vicinity of a regular island, where it is tem-
porarily trapped and induced to mimic the trajectories within the island. As a conse-
quence, also transport shows much larger fluctuations in the presence of disorder, hence
averaging over longer times is required to obtain meaningful results.

The effects of time-dependent noise are more drastic. By random jumps in phase
space, trajectories move between the invariant sets of the noise-free system, so that all
invariant sets effectively merge into one, on a time scale given by the noise intensity.
As transport in the Hamiltonian case depends on the coexistence of disjunct invariant
sets, it breaks down on the same time scale (ACEVEDO et al. 2002).

Fig. 7 Phase space of a Hamiltonian ratchet with weak static disorder. A regular island extending over var-
ious unit cells of the underlying periodic potential is visible in the lower part of the figure.

4. Quantum Hamiltonian Ratchets

With models of Hamiltonian ratchets at hand, their quantization reduces to a mere tech-
nical task (DiTTRrICH et al. 2000, ScHANZ et al. 2001). Yet some details deserve mention-
ing: The quantization procedure should respect, and where possible exploit, the spatio-
temporal periodicity of ratchet potentials. For both aspects, taylor-made formalisms are
readily available, in the form of Bloch theory, for systems with discrete spatial invar-
iance, and Floquet theory, its analogue in the time domain. They entail a number of per-
tinent consequences for the quantum dynamics: Bloch theory implies that the eigenener-
gies of the system are organized as bands E,(q), continuous functions of the
quasimomentum ¢ (or Bloch phase ¢/) as an additional independent conserved quantity.
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The Floquet formalism, in turn, abandons energy as conserved quantity, replacing it by
the Floquet or quasienergy &,(q), actually a phase defined only mod %, where @ = 27/T
is the fundamental frequency of the driving.

How is the mechanism of directed transport in classical Hamiltonian ratchets re-
flected in the structure of quasienergy bands of their quantum counterparts — if indeed
it is? The principle of quantum-classical correspondence in fact requires that the quan-
tum dynamics must mimic the classical at least on a finite time scale. To begin with, by
the same principle, the partition of phase space into regular and chaotic regions transfers
to the quantum realm as a corresponding distinction, as sharp as the Heisenberg uncer-
tainty relation allows, between chaotic and regular eigenstates. A transport velocity is
associated to the band « at quasimomentum ¢ by

valq) = ds:{c(]q)’

[5]

P(v)

1

Fig. 8 Typical band structure e(g) and corresponding velocity distribution P(v) for a quantum Hamiltonian
ratchet, obtained by quantizing the classical system shown in Figure 4 C, D. The straight line sections corre-
spond to a classical regular island with winding number w = -1 (cf. Fig. 3), reflected in the sharp peak at
Vreg = —1 of the velocity distribution. The remaining wiggly band sections are associated to the chaotic sea in
the classical phase space and reflected in the broader peak marked v.,. The small insets show quantum
phase-space distributions (Husimi functions) for eigenstates located within the regular island (/eff) and in
the chaotic sea (right), respectively.

288 Nova Acta Leopoldina NF 88, Nr. 332, S. 279-291



Chaotic Ratchets: Dissipative versus Hamiltonian, Classical versus Quantum

the slope of the band at this point. However, since bands are periodic functions of ¢, an
average of de,(q)/dgq over the entire band vanishes identically. This is the quantum coun-
terpart of the classical sum rule discussed in subsection 3./ (DitTrRICH et al. 2000,
SCHANZ et al. 2001).

Also the loophole for directed transport has its quantum analogue: In the typical band
structure of a ratchet we distinguish almost straight line sections, with a certain slope, as
well as more wiggly curves, with a less well defined yet clearly visible mean slope of
opposite sign. It is these band sections that can be associated to classical regular islands
and the chaotic sea, respectively. So an initial ensemble localized, say, in a phase-space
region corresponding to a regular island of the classical dynamics has weight predomi-
nantly on band sections with a slope equal to the classical transport velocity, distributed
over various bands (Fig. 8 and 9). In this way the quantum sum rule, which refers to
entire bands, is circumvented. Numerical experiments indeed show agreement between
quantum and classical transport in every detail of the velocity distribution.

Genuine quantum effects, however, are expected to show up on very long time scales.
Spatial periodicity implies that in the long-time average, wave packets will travel along
the ratchet by tunneling between unit cells (a phenomenon called Bloch tunneling) with

Fig. 9 The same band structure as in the inset in Figure 8, but with the weight distributions for eigenstates lo-
calized in the regular island (A) and in the chaotic sea (B), respectively, indicated by the width of the bands.
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a group velocity that is in general different from any classical transport velocity. This
quantum interference effect, however, competes with decoherence, which also invari-
ably sets in on sufficiently long time scales.

Breaking periodicity likewise counteracts tunneling: Spatial disorder, however weak,
leads to an antagonist effect, Anderson localization (DITTRICH et al. 2001). It is reflected
in the quasienergy eigenstates showing an exponential envelope ~ exp(—Ixl/A), character-
ized by a localization length A rather than extending over the entire ratchet. In other
words, the system changes from conductor to insulator. A wave packet can then move
with the corresponding classical transport velocity only until it reaches a distance of
the order of A from where it was launched, whereupon it is stuck.

5. Outlook

The preceding sections have led, in a reductionist spirit, from models directly inspired by
molecular motors, to theoretical constructions probing basic features of quantum dy-
namics. It is time then to return to more complex systems again, step by step adding
realistic detail to the models considered. Several directions are of interest:

Dissipation and decoherence are unavoidable phenomena even on the molecular lev-
el. They are introduced in a microscopic framework by explicitly including the ambient
degrees of freedom that absorb energy from the system of interest. While results on
dissipative quantum ratchets with just a few levels already exist (GOYCHUK and HANGGI
2001), the technically more demanding problem of quantizing dissipative ratchets in the
semiclassical regime where their behavior reflects the classical chaotic motion, has not
yet been solved. It would allow to study the full interplay of chaos, quantum effects, and
decoherence in directed transport, as pointed out in the introduction.

In order to exclude trivial transport mechanisms, external gradients have intentionally
been avoided in the ratchet models presented above. In the living cell, however, molecu-
lar motors typically have to work against external forces. This changes the physical sit-
uation considerably, in particular in Hamiltonian systems where the loss/gain of kinetic
energy in moving up/down a potential slope is not counterbalanced by a reservoir. More-
over, in quantizing systems with a mean potential slope, the Bloch theorem, which re-
quires spatial periodicity, no longer applies.

The most striking difference between biophysics-style models of molecular motors
and the ratchets considered here is that the latter consist of point particles, void of any
internal structure, while the former often represent elaborate molecular machines with
complex internal mechanisms. Possibly the most urgent challenge for ratchet research
is therefore to gradually add internal degrees of freedom, studying their influence on,
and possible constructive role in, directed transport (NAKAGAWA and KANEKO 2002).

Acknowledgements

One of us (TD) thanks the Max Planck Society for the hospitality enjoyed during various stays at its Institu-
tes for the Physics of Complex Systems, Dresden, and Flow Research, Gottingen, where part of this work
has been performed. We gratefully acknowledge financial support by the Division de Investigacion, Sede
Bogotd (DIB, contract 803684), and Direccion Nacional de Investigacion (DINAIN, contract DIO0C1255),
of Universidad Nacional de Colombia, and by Colciencias (contract 310223).

290 Nova Acta Leopoldina NF 88, Nr. 332, S. 279-291



Chaotic Ratchets: Dissipative versus Hamiltonian, Classical versus Quantum

References

ACEVEDO, W., DITTRICH, T., and PINEDA, C.: Matracas clasicas hamiltonianas y disipativas. Rev. Col. Fis.
34, 380-385 (2002)

DEL-CASTILLO-NEGRETE, D.: Asymmetric transport and non-Gaussian statistics of passive scalars in vortices
in shear flow. Phys. Fluids /0, 576-594 (1998)

DirrricH, T., KETZMERICK, R., OTTO, M.-E,, and ScHANZ, H.: Classical and quantum transport in determin-
istic hamiltonian ratchets. Ann. Phys. (Leipzig) 9, 755-763 (2000)

DirrricH, T., MEHLIG, B., and ScHANZ, H.: Spectral signatures of chaotic diffusion in systems with and
without spatial order. Physica E 9, 494-497 (2001)

FLAcH, S., YEVTUSHENKO, O., and ZOLOTARYUK, Y.: Directed current due to broken time-space symmetry.
Phys. Rev. Lett. 84, 2358-2361 (2000)

GAMMAITONI, L., HANGGL, P., JUNG, P, and MARCHESONI, F.: Stochastic resonance. Rev. Mod. Phys. 70,
223-287 (1998)

GOYCHUK, I., and HANGGI, P.: Minimal quantum brownian rectifiers. J. Phys. Chem. B 105, 6642—-6647
(2001)

JUNG, P, KISSNER, J. G., and HANGGI, P.: Regular and chaotic transport in asymmetric periodic potentials:
inertia ratchets. Phys. Rev. Lett. 76, 34363439 (1996)

MATEOS, J. L.: Chaotic transport and current reversal in deterministic ratchets. Phys. Rev. Lett. 84, 258-261
(2000)

NAKAGAWA, N., and KANEKO, K.: Dynamical mechanism for the conversion of energy at a molecular scale.
Phys. Rev. E 67, 040901-1-4 (2003)

REIMANN, P.: Brownian motors: noisy transport far from equilibrium. Phys. Rep. 362, 57-265 (2002)

RICHENS, P. J., and BERRY, M. V.: Pseudointegrable systems in classical and quantum mechanics. Physica
2D, 495-512 (1981)

ScHANzZ, H., OtT0, M.-F., KETZMERICK, R., and DirTRICH, T.: Classical and quantum hamiltonian ratchets.
Phys. Rev. Lett. 87, 070601-1-4 (2001)

UTERMANN, R., DITTRICH, T., and HANGGI, P.: Tunneling and the onset of chaos in a driven bistable system.
Phys. Rev. E 49, 273-280 (1994)

Prof. Dr. Thomas DITTRICH
Universidad Nacional de Colombia
Departamento de Fisica

Santafé de Bogota

Colombia

Phone: +57 13 16 50 00 ext. 1 30 44
Fax: 457 131651 35

E-Mail: dittrich@ciencias.unal.edu.co

Nova Acta Leopoldina NF 88, Nr. 332, S. 279-291 291



Nova Acta Leopoldina NF 88, Nr. 332, 293-318 (2003)

Temperature Encoding in Peripheral Cold
Receptors: Oscillations, Resonances, Chaos,
and Noise

Hans Albert BRAUN', Klaus SCHAFER', Karlheinz VOIGT',
and Martin Tobias HUBER® (Marburg)

With 6 Figures

Abstract

Peripheral cold receptors belong to the most flexible neuronal impulse pattern generators. Dependent on
their physiological stimulus, i. e. temperature, they pass through a fascinating array of impulse sequences of
different temporal structures including burst discharges, tonic firing as well as impulse patterns of apparently
chaotic origin and others, which can only be understood on the basis of an essential contribution of noise.
For a better understanding of the neuronal transduction mechanisms, we compare experimental recordings
from cold sensitive nerve fibers with data from deterministic and noisy computer simulations. To focus on
the general principles we have used a simplified Hodgkin-Huxley type approach. Impulse sequences, inter-
val-plots (bifurcation diagrams) and return maps demonstrate very close agreement between experimental
recordings and noisy simulations. Comparison with deterministic simulations suggests that the major neuro-
modulatory characteristics can be attributed to varying resonances between two subsystems: the subthres-
hold oscillations and the spike generating mechanism. However, the results also indicate that the full variety
of impulse patterns and smooth transitions can only be obtained with cooperative noise effects which, in spe-
cific situations, can become of particular physiological relevance.

Zusammenfassung

Periphere Kilterezeptoren gehoren zu den flexibelsten neuronalen Mustergeneratoren. In Abhingigkeit von
ihrem physiologisch adédquaten Reiz, der Temperatur, durchlaufen sie eine faszinierende Vielfalt unter-
schiedlichster Impulsmuster. Dazu gehoren tonische Einzelspike-Entladungen und Impulsgruppenentladun-
gen (Bursts) genau so wie chaotisch strukturierte Impulssequenzen und wieder andere, die nur unter dem
Einflul von Rauschen zustande kommen konnen. Fiir ein besseres Verstdndnis der zugrundeliegenden neu-
ronalen Prozesse haben wir die experimentellen Befunde im Vergleich mit den Ergebnissen deterministi-
scher und »verrauschter« Computer-Simulationen untersucht. Unser Computer-Modell beruht auf dem soge-
nannten Hodgkin-Huxley-Ansatz, der aber erheblich vereinfacht wurde, da wir uns fiir die prinzipiellen
Systemeigenschaften interessierten. Impulssequenzen, Intervall-Punktkurven (Bifurkationsdiagramme) und
sogenannte »Return-Maps« belegen eine ausgezeichnete Ubereinstimmung zwischen den experimentellen
Daten und verrauschten Simulationen. Der Vergleich mit deterministischen Simulationen zeigt, dafl die neu-
romodulatorischen Eigenschaften mit verdndertem Resonanzverhalten zwischen zwei Teilsystemen, einem
unterschwelligen Oszillator und dem Impulsgenerator, zu erklédren sind. Die Ergebnisse zeigen aber auch,
daB die gesamte Vielfalt der Impulsmuster mit ihren kontinuierlichen Ubergiingen nur durch die nichtlinea-
ren Wechselwirkungen mit Rauscheffekten zu erhalten ist. Diese kooperativen Effekte zwischen nichtlinea-
ren Systemeigenschaften und Rauschen konnen unter bestimmten Bedingungen von herausragender physio-
logischer Bedeutung sein.

1 Institute of Physiology, University Marburg.
2 Department of Psychiatry, University Marburg.

293



Hans Albert Braun, Klaus Schdfer, Karlheinz Voigt, and Martin Tobias Huber

1. Introduction

In experimental recordings of peripheral sensory receptors and central neurons we
have seen continuous transitions between different types of oscillatory patterns as a
function of physiologically relevant stimuli. Specifically, peripheral cold receptors
show a fascinating array of impulse patterns. Depending on the skin temperature, the
same neuron can exhibit burst discharges (impulse groups) or tonic activity as well as
“irregular” patterns of apparently “chaotic” origin and others which can only be ex-
plained with the essential contribution of “noise” (see e.g. BRAUN et al. 1984 a,
1994, 1999). Moreover, in the case of peripheral cold receptors, it is agreed that all
these different patterns originate from the neurons’ intrinsic dynamical properties.
The transduction sites seem to consist of nothing more than free nerve endings of
Ad-fibres which divide into several unmyelinated terminals at the basal epidermal
layer of the skin (HENSEL et al. 1974). Any synaptic interactions between these tiny
and sparsely distributed nerve endings can be excluded. Hence, it is an almost perfect
model to study the neuromodulatory properties of a very flexible endogenous neuronal
impulse pattern generator, although there is one major disadvantage: so far, no intra-
cellular recordings of membrane potentials and ion currents have been possible from
these tiny nerve endings.

Several groups have tried to obtain further insight into cold transduction with intra-
cellular recordings from the somata of the peripheral nerves assuming that the principle
mechanisms of cold transduction might be similar to those at the sensory nerve ter-
minals. Indeed, these groups have detected depolarizing currents in response to cooling
as well as on application of menthol (REID and FLoNTA 2001, McKEMY et al. 2002,
VIANA et al. 2002). Menthol is a substance of well-known cooling effects and therefore
has been used as a marker of cold sensitive neurons. Menthol activates cold receptors
and strengthens their temporal patterns (SCHAFER et al. 1986, 1991) which was attrib-
uted to blockade of low-voltage, T-type calcium channels (SWANDULLA et al. 1986, 1987).
In the neurons’ somata, cold and menthol sensitive membrane receptors have been iden-
tified and could also be cloned (McKEMY et al. 2002, PEIER et al. 2002). In spite of this
remarkable success (see also CLapHAM 2002, MacDerMoOTT and Lee 2002), the data
from the neurons’ somata still leaves open questions and are contradictory in some
parts, e.g., with regard to the nature of the cold current (see also MACDERMOTT and
Lee 2002). More discrepancies become evident upon comparison of the data from the
somata with the neuronal discharges that we and others have recorded from the afferent
nerve fibers. The most obvious and important difference is that the neurons’ somata only
show transient discharges during strong cooling whereas the peripheral receptors are
spontaneously active over a broad temperature range and thereby exhibit systematic
modifications of impulse patterns which is essential for the encoding of constant tem-
peratures. Hence, the recordings from the neurons’ somata might have their particular
value in elucidating cold sensitive currents but, so far, cannot contribute to the under-
standing of neuronal impulse pattern generation and stimulus dependent modulation sim-
ply because of the lack of such spontaneous discharges.

Therefore, as a supplement to the experimental recordings we also have made use of
computer modeling studies. Our model is based on a simplified Hodgkin-Huxley (HH)
type approach (HODGKIN and HUXLEY 1952). It includes two subthreshold currents in
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addition to the spike-generating currents (e.g. BRAUN et al. 1998, HUBER et al. 1998,
Braun et al. 2000) but does not have more dimensions, i.e. differential equations, then
the original HH-model. This could be achieved with physiologically justified simplifica-
tions as we will describe below (see 3.1). Admittedly, there exist other dimension re-
duced models — the most prominent being the Fitzhugh-Nagumo model — (FirzHUGH
1965, see also TUCKWELL 1988). However, these are rather abstract mathematical reali-
zations of the neuronal dynamics which sacrificed the clearly specified interrelations
between membrane voltage and ion currents of the original Hodgkin-Huxley approach.
Such models are preferably used in biophysical studies. For the experimental physiolo-
gist, it is of particular importance that the electrophysiological data can be correlated
with model parameters of clearly defined physiological meaning. Indeed, our first simu-
lations were done with a detailed model of many dimensions which, for example, had
two compartments, one for subthreshold oscillation and one for spike generation (e. g.
HuUBER et al. 2000 a). Only then, in parallel to these specific simulation studies, we have
systematically reduced the dimensions of our model with the goal of not only focusing
on the details of cold receptor transduction but also elucidating the general principles of
neuronal impulse pattern generation and their stimulus dependent modulation. However,
we took care not to loose the link between experimental data and model parameters in
the course of dimension reduction and could develop a dimension reduced but physiolog-
ically motivated model which, in the meantime, is widely used as a promising approach
to attain a better understanding of neuromodulatory properties also under a more general,
biophysical point of view (GILMORE 1999, NEIMAN et al. 1999, W. BRAUN et al. 2000,
FEUDEL et al. 2000).

In the following we will illustrate the experimental background of our model and
then describe our modeling approach and show that all relevant types of impulse pattern
can be obtained with systematic, physiologically plausible modulations of the model
parameters. We also will emphasize the more general aspects of neuronal impulse pat-
tern generators from the viewpoint of coupled oscillators. We will show that individual
patterns reflect distinct resonant behaviors between subthreshold oscillations and spike-
generating processes which can lead to comparably regular discharges, e.g. rhythmic
bursts or tonic firing, as well as rather complex, e. g. chaotic, patterns.

Last but not least, we will consider the effects of noise, i. e. high dimensional, random
dynamics. Biological systems are notoriously noisy which, in neuronal impulse record-
ings, is manifested in fluctuations of the interspike-intervals. In individual neurons noise
might simply arise from the stochastic properties of ion channel gating, whereas neuro-
nal networks also have to consider the stochasticity of synaptic currents (for a more de-
tailed discussion of neuronal noise sources see, for example, LONGTIN and HINZER 1995
or WHITE at al. 2000 and references therein). Irrespective of the origin of noise, it is
usually considered detrimental to the encoding process. However, also beneficial effects
of noise have been described, e. g. stochastic resonance phenomena (e. g. DOUGLAS et al.
1993, LONGTIN 1993, for review see WIESENFELD and Moss 1995). In some sensory
neurons like shark electroreceptors, noise even seems to be inevitable for stimulus en-
coding (BRAUN et al. 1994). With the use of computer modeling studies we have the
advantage of comparing noisy and deterministic simulations for further elucidation of
the noise effects. We will show that the impact of noise can change essentially depend-
ing on the dynamical situation.
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2. Experimental Background: the Impulse Patterns of Peripheral Cold Receptors

Stimulus transduction in temperature sensitive skin receptors is based on the modulation
of periodically generated impulse patterns. This has been shown for a variety of specific
warm and cold receptors of mammals, birds and snakes and also holds true for several
temperature sensitive electroreceptors of fish (BRAUN et al. 1980, 1984 b, SCHAFER et al.
1988, 1989, BRAUN et al. 1990, HEINZ et al. 1990, BRAUN et al. 1994, SCHAFER et al.
1995). Among all these sensory receptors, peripheral cold receptors are exceptional in
so far as they clearly exhibit the greatest variety of impulse patterns (BRAUN et al.
1980, 1984 b). An example of an extracellular impulse recording from a single cold sen-
sitive afferent fiber is shown in Figure 1 (for methods see SCHAFER et al. 1986). It illus-
trates how the firing rate (Fig. 1 A) and the distribution of interspike-intervals (Fig. 1 B)
changes as a function of temperature which was successively decreased from 35 to 10 °C
in temperature steps of 5°C each (Fig. 1 C). Modifications of the impulse activity are
further illustrated in the lower traces with examples of spike sequences (Fig. 1 D). Addi-
tionally, the serial interdependencies of spike-generation are illustrated in Figure 2 with
examples from typical discharge patterns.

2.1 Frequency Responses: The Rate Code

The most prominent feature of the frequency plot (Fig. 1 A) is the so-called dynamic
frequency overshoot which can be seen at each cooling step (Fig. 1 C). This is a tran-
sient increase of the firing rate with subsequent adaptation to a new steady state. Fast
warming — not shown here — induces the opposite effect, a frequency undershoot, i.e. a
transient decrease or complete inhibition of the spike activity. Warm receptors exhibit
just the inverse characteristics, a frequency overshoot on warming and undershoot on
cooling. For comparison of the frequency-temperature characteristics of warm and cold
receptors see for example SCHAFER et al. (1988).

These dynamic response characteristics provide an unambiguous criterion for distin-
guishing between cold and warm receptors (see definition in HENSEL et al. 1969). Apart
from that, both cold and warm receptors are spontaneously active at constant tempera-
tures over a wide temperature range — here from 35°C down to 10°C. However, the
static firing rate cannot provide clear information about the actual skin temperature. It
generally reaches a maximum around mid-temperatures (mostly 25 °C — 30 °C) and de-

Fig. 1 Typical response characteristics of cold receptors illustrated with data from a continuous extracellu-
lar recording of action potentials from a peripheral cold receptor in the cat’s nose (see SCHAFER et al. 1986).
Firing rate (A) and interspike-intervals (B) are plotted over a total recording time of about 800 s in parallel
with the stimulation temperature (C) which was successively decreased from 35 to 10°C in steps of 5°C
with longer sequences of constant temperatures in between. Recording time is indicated at the abscissae in
C. Each cooling step (C) is accompanied with a sudden change of the interval distribution (B) which leads to
an immediately increasing firing rate (A) as indicated by the vertical dashed lines. The firing rate shows the
characteristic frequency overshoot with subsequent adaptation to a new steady state at constant tempera-
tures. The lower traces (D) additionally show examples of impulse sequences out of these recordings from
static discharges at different constant temperatures which are indicated on the left.
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Fig.2 Return maps of typical impulse patterns of cold receptor discharges illustrate the serial interdepend-
encies of impulse generation. The duration of a given interspike interval at position n (ID,, ID = interval
duration) is plotted as abscissa value. The duration of the following interval ID,,; (position n + 1) is plotted
as ordinate value. The 45° line indicates the position of identical values. Recordings are made at different
constant temperatures as indicated on the top of each diagram.
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creases towards both extremes of the temperature range (see SCHAFER et al. 1988). In
this example, there is a maximum value at 30 °C whereas the frequency values at all
other temperatures do not differ very much. Only the static firing rate at 10 °C value is
clearly lower. Altogether, cold receptors seem to be far away from being well-designed
sensors — at least not for frequency coding of constant temperatures.

2.2 Impulse Patterns: The Temporal Code

While the average firing rate cannot deliver unambiguous information about constant
temperatures, the situation changes when we look at the temporal pattern of the dis-
charge. It can be seen already with a superficial look on the spike sequences (Fig. 1 D)
and even more clearly in the plot of interspike-intervals (Fig. 1 B) that the impulse pat-
tern delivers more information than an average firing rate can provide.

In the interval plot (Fig. 1 B), we can see distinct bands. At 30°C and 25 °C most
intervals are concentrated in a single, rather narrow band. This corresponds to a compara-
bly regular tonic discharge (see Fig. 1 D, 30°C, 25 °C). Compared to 30 °C the interval
band at 25 °C is shifted to higher values indicating a moderate lengthening of the inter-
spike-intervals. The shift of this interval band, including a broadening, continues at 20 °C
where, however, an additional band of short intervals occurs. This indicates a qualitative
change: the transition from tonic firing to impulse groups, called burst discharges. The
additional band of short intervals reflects the high frequency intraburst-discharges. With
further temperature decrease to 15 °C a further lengthening of the band of longer inter-
vals is seen and the number of spikes per burst increases (see Fig. 1 D, 20 °C and 15 °C).
At 10 °C there is again a qualitative change. The band of longer intervals disappears or is
melted together with the drastically broadened band of short intervals. The pattern has
changed to a comparably irregular tonic discharge (Fig. 1 D, 10 °C).

Finally, we have to look at a particular type of a seemingly irregular impulse pattern
which, however, is different from that a 10 °C and only can be seen at the highest tem-
peratures of the activity range, i.e. 35°C or 40 °C (35°C in Fig. 1 D). Figure 1 B illus-
trates that such spike sequences, as here recorded at 35 °C, lead to typical interval distri-
butions. There is a main interval band at approximately the same level as the interval
band at 30 °C (around 150 ms). However, at 35 °C, there are additional bands of longer
intervals which are located at about integer multiples of the main interval band (around
300 ms and 450 ms).

Altogether, there are systematic modifications of the temporal patterns of the dis-
charge which can provide unambiguous information about constant skin temperatures.
Also the frequency overshoots on cooling can be related to characteristic modifications
of the impulse patterns: the frequency increase is essentially caused by a transient short-
ening of the interspike-intervals in the main interval band and by a tendency towards
burst discharges with an increasing number of intraburst intervals (for a more detailed
analysis see BRAUN et al. 1980). For example, the cooling step from 30 to 25 °C induces
a transient, very brief sequence of bursts which disappears during adaptation. Other fi-
bers which we have examined with the same stimulus protocol exhibit burst patterns at
25°C also in the steady state. Often, the only temperature with regular tonic discharges
is 30 °C which is around the “normal” skin temperature, i.e., when no environmental
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stimuli are present. Any deviation is clearly indicated by unambiguous modifications of
the impulse patterns which allow to distinguish between different temperatures also
when the firing rate might be the same.

2.3 Typical Impulse Patterns and their Return Maps (Serial Interdependencis)

For further illustration of characteristic patterns of cold receptor discharges we also have
plotted so-called return maps (Fig. 2). The return maps (RM) illustrate the interdepend-
encies between successive interspike-intervals whereby the actual interval is plotted as
abscissa value and a following one is plotted as ordinate value. Here we only consider
the first-order return maps which means that the actual interval (ID,) is plotted versus
the immediately following one (ID,,).

It is easy to understand that a completely regular tonic discharge, where each interval
is of exactly the same length, will give a single point in the return map on the 45 °C line
(the line of identity of x- and y-values). In biological systems this can only be obtained
with some approximation because of the unavoidable noise.

The RM in Figure 2 A is drawn from one of the most regular single-spike discharges
that we have recorded. There are only tiny fluctuations around an interval of about
100 ms. This recording was made at 30 °C which, as said before, is the favorite tempera-
ture for periodic single-spike discharges. Such extraordinarily regular discharges, how-
ever, were only seen during reduction of external Ca**, or under Ca**-channel block-
ade, e. g. with menthol (see SCHAFER et al. 1986, 1991).

The recording in Figure 2B was also obtained under Ca**-channel blockade — but at
the next higher temperature (35 °C) where the dots are heavily scattered across an inter-
val range of 900 ms and more. Nevertheless, the RM shows a clear structure. There are
several clusters along the 45 °C line and there are others at approximately the same lev-
els along the abscissa and ordinate. According to Figure 1, 35 °C, this distribution indi-
cates that the spikes are triggered at about integer multiples of a basic discharge period
(which is still around 100 ms). The probability for the occurrence of longer intervals is
lower than for shorter intervals and additionally decreases with increasing length of the
preceding interval which suggests that a purely random, e. g., Poisson-like process con-
tributes to the impulse generation (see also next section for further evidence).

The RM in Figure 2 C shows one of the more complex structures which preferably
can be seen at 25°C or 30°C but in such clarity again could only be recorded under
Ca?*-channel blockade. There is still a cluster around the 45 °C line according to regular
spike sequences of almost identical intervals (somewhat longer than in A and B). There
are also clusters at higher ordinate and abszissa values around integer multiples accord-
ing to Figure 1 B. But they occur to a clearly less extent (only up to the two-fold, occa-
sionally threefold length of the basic period). Instead, there are additional clusters at
shorter abscissa and ordinate values which reflect the occurrence of intraburst intervals.
Again, there is a decreasing probability of interval pairs of longer intervals but also the
occurrence of successive intraburst intervals is extremely rare.

The return map in Figure 2 D is that of a very regular burst discharge. Longer inter-
burst intervals are followed by short intraburst intervals (the right lower cluster) and
short intraburst intervals are followed by longer burst pauses (the left upper cluster) but
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also can be followed by another intraburst interval (the cluster of short-short intervals).
There is no sequence of long-long intervals which means that the cold receptor here
generates regular bursts without any single-spike sequence. The extensions of the clus-
ters of long-short and short-long intervals indicate that the fluctuations of the burstpauses
are stronger than those of the intraburst intervals.

Figure 2 E and 2 F illustrate the transitions from regular bursts at mid-temperatures to
irregular firing at lower temperatures. In Figure 2 E there are still some indications of
burst discharges as manifested in preferable occurrences of interval pairs of long-short,
short-long and short-short intervals and the lack of long-long intervals. But there are also
many interval pairs of intermediate values which means that there is no longer a clear
transition from intraburst intervals to burst pauses, as seen in Figure 2 D.

Figure 2 F finally shows a rather unstructured return map of a type that we only have
recorded at the lowest temperatures (10 or 5 °C). It mainly shows broad random fluctua-
tions along the 45 ° line although some indications of serial interdependences can still be
seen. There is a slight but clear tendency that longer intervals are preferably followed by
shorter ones and vice versa.

2.4 Transduction Processes: Oscillations and Noise

As mentioned above, the tiny nerve endings of cold fibers, so far, do not allow intracel-
lular recordings of the membrane potential. However, the occurrence of rhythmic burst
discharges immediately implies rhythmic transduction processes of spike generation, i.e.
spike-generating oscillations (IGGo and YOUNG 1975). A more detailed analysis of the
impulse patterns revealed that also the non-bursting discharges can be related to peri-
odic processes of spike-generation (e.g. BRAUN et al. 1980). Remarkably, it is mainly
the irregular pattern at higher temperatures which gives further evidence for spike-trig-
gering oscillations. The fact that the longer intervals are distributed at integer multiples
of the shortest intervals suggests an oscillating process which does not trigger groups of
impulses but only single-spikes and sometimes even fails to trigger an impulse. Each
oscillation cycle without impulse generation lengthens the interspike interval by the os-
cillation period. Hence, the band of shortest intervals (see Fig. 1 B) corresponds to the
oscillation period whereas the longer intervals indicate the occurrence of so-called
“skippings”, i.e. one or more oscillation cycles without spike-generation. The distribu-
tion of interval pairs in return maps like those of Figure 2 B fits very well to a Poisson
distribution which indicates that this pattern, indeed, depends on random, i.e. high-di-
mensional components rather than on low-dimensional, e.g. ‘“chaotic” dynamics.
Hence, it can be concluded that this type of patterns results from cooperative effects
between oscillations and noise, whereby the oscillations determine the basic rhythm of
the discharge while random components decide whether a spike is triggered or not (see
also, for example BRAUN et al. 1980, 1984 b, 1990, 1994).

Regular tonic firing, in principle, can originate from subthreshold oscillations as well
as from pacemaker mechanisms. We assume that cold receptors make use of both types
of spike-generating processes. Tonic activity in the upper temperature range (at 30 or
25°C) occurs in an intermediate state between burst discharges and skippings and is
often seen in coexistence with these patterns (as in the recording in Figure 2 C). Hence,
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there can be no doubt that also this type of tonic discharge is generated by subthreshold
oscillations which do not produce skippings nor bursts but — more or less regularly —
generate one single-spike per oscillation cycle. This assumption is further supported by
the equal distributions of the interval pairs in the return map around a periodic fixed
point at the 45° line.

The discharges at low temperatures seem to be of different origin. Towards lower
temperatures we do not only see a lengthening of the oscillation period, but also found
evidence for a reduced amplitude of oscillation as it is indicated, for example, by a
lengthening of the intraburst intervals (for details see BRAUN et al. 1980, SCHAFER et
al. 1986). In the extreme, the oscillations seem to be more or less diminished and spike
generation essentially seems to reflect some kind of tonic depolarization with stochastic
fluctuations. This corresponds to a noisy pacemaker which, of course, does not produce
“skippings” but nevertheless will show serial interdependencies (Fig.2 F) simply be-
cause it is very unlikely that an extraordinarily long interval again is followed by a an-
other very long interval. Principally, it is the same effect which reduces the probability of
long-long intervals at higher temperatures (Fig. 2 C) — but without the oscillations.

These findings allowed us to describe the remarkable variety of impulse patterns in
peripheral cold receptors on the basis of subthreshold oscillations and noise with com-
parably simple rules (BRAUN et al. 1980). The assumption is that the noisy subthreshold
oscillator is most effective at mid-temperatures where it triggers groups of impulses, i.e.
bursts. Increasing temperature increases the oscillation frequency which reduces the
number of spikes per oscillation cycle until only single spikes and finally more and
more skippings occur. Towards lower temperature, the oscillation period increases, but
the more pronounced and qualitative change comes from a simultaneous reduction of
the oscillation amplitude which leads to irregular bursts and eventually tonic discharges.

3. The Model: Impulse Generation with Noisy Subthreshold Oscillations

Originally we have used a simple analog computer simulation to illustrate the above
described hypothesis of a neuronal pattern generator with noisy subthreshold oscilla-
tions (BRAUN et al. 1984 a, b). The analog computer circuit consisted of a leaky integra-
tor which was fed by a sine wave and noise. We could show that continuous transitions
between different types of patterns could be obtained with modulation of a single param-
eter, the sine-wave frequency. Only for the simulations of the bursting-to-tonic transi-
tions at low temperatures we additionally had to reduce the sine-wave amplitude (see
Fig. 8 in BRAUN et al. 1984 a).

More recently we — as many others — have taken advantage from the progress in dig-
ital computer technologies and developed a Hodgkin-Huxley (HH) type model which
additionally allows to evaluate the underlying ionic mechanisms of pattern generation.
Our original model (for equations see HUBER et al. 2000 a) had many more dimensions
than the present one. It included two electrically coupled compartments: the spike-gen-
erating compartment and a transduction compartment for subthreshold oscillations. Ac-
cordingly, we had two membrane equations, one with fast sodium and potassium currents
for spike-generation and the other one with more slowly activating currents for subthres-
hold oscillations. Subthreshold oscillations develop from the interplay of a persistent
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sodium current with a voltage-dependent calcium current and a calcium-dependent po-
tassium current. They were passively coupled to the spike-generator.

Similar concepts of intrinsically oscillating neurons were first described and modeled
for molluscan pacemaker neurons many years ago (e.g. PLANT 1978, 1981), which was
at a time when mammalian neurons still were considered as rather passive transduction
elements without intrinsic dynamics. During recent years, however, there was growing
evidence that also mammalian neurons in the central nervous system (CNS) are far
away from being such “platonic nerve cells”, but endow a great variety of intrinsic sub-
threshold mechanisms with a manifold of subthreshold currents (LLINAS 1988). Major
experimental evidence came from the analysis of neuronal activity in the thalamus, the
entorhinal cortex and amygdala (e.g. LLINAS and YAROM 1986, ALONSO and LLINAS
1989, McCorMick and FEeESER 1990, LLINAS et al. 1991, KLINK and ALONSO 1993,
LampL and YAROM 1993, PARE et al. 1995). Also several computer modeling studies
have been published which mostly focus on particular properties of the specific neurons
(e.g. TorH and CRUNELLI 1992, WANG 1994, GUTFREUND et al. 1995) but there were
also more general approaches (e. g. CHAY et al. 1995, LONGTIN and HINZER 1995). Inter-
estingly, the latter is also referring to peripheral cold receptor discharges because of their
“fascinating array of firing patterns” and it is based on the above mentioned model of
PLANT.

Our model, in parts, has much in common with the other simulation approaches but
also is different in several respects. On the one hand we have considered some particular
properties of cold receptor discharges which we have seen in our experiments, e. g. spe-
cific Ca effects or serial interdependences of impulse generation (e.g. SCHAFER et al.
1986). On the other hand we have tried to develop a generalized approach to elucidate
the major functional properties of a flexible neuronal pattern generator irrespective of the
specific ionic components of individual neurons.

3.1 Modeling Concepts and Model Equations

Here we describe the dimension-reduced version of our cold receptor model. This model
has attracted particular attention, not only because it successfully simulates stationary
cold receptor discharges, but also as a generalized neuronal pattern generator of enor-
mous flexibility (see, for example, GILMORE 1999, NEIMAN et al. 1999, W. BRAUN et
al. 2000, FEUDEL et al. 2000).

This model has only a single compartment (see Fig. 3A) and, therefore, only one
membrane equation:

CyvdVidt=-1; = Ig = I = Lsq = I + Lopp (1]

Cyw is the membrane capacitance and V is the membrane voltage. Apart from the leakage
current I; there are four voltage dependent currents Iy, I, Iy, and I and a term for ex-
ternal current application I,p,. For numerical calculations of this and the other differen-
tial equations we used the Euler version of integration with time steps dt = 0.1 ms.
According to our generalized approach we do not refer to specific ion currents but to
the de- and repolarizing components of the two subsystems, the spike generator and the
subthreshold oscillator (see Fig. 3 A). 1, is the fast depolarizing current and I, is the fast
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Fig. 3 (A) The electrical equivalent circuit of the model with a leak current and two sets of voltage depen-
dent, de- and repolarizing currents for spike generation and for subthreshold oscillations (for details see
text). (B) The steady-state activation values as functions of the membrane potential. (C) The time-dependen-
cies of activation on a depolarizing voltage step. (D): Voltage traces at the reference temperature of 25 °C:
the response of the complete model (upper trace), of the oscillatory subsystem (mid-trace) and of the spike-
generating subsystem (lowest traces). Spikes which are seen in the lowest traces are only generated with ex-
ternal current injection (here I,p, = 1.122). Below this value the spike-generator has a stable potential. The
horizontal line indicates the situation at the spike-generator with I,,, = 0.
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repolarizing current which reflect the classical Na*- and K*-currents for spike genera-
tion. The physiological correlates for the other two currents, Iy and I, might be differ-
ent in different neurons. Their major characteristics are that they activate much slower
than the spike-currents and at lower membrane potentials (Fig. 3 B, C). The additional
subfix “s” stands for “slow” and “subthreshold” activation.

The leakage current is given by

L=gi(V-Vy (2]
and the voltage-dependent currents are calculated by:
I =pgai(V-V)); fori=d,r, sd, sr. [3]

V; are the equilibrium (Nernst) potentials, g; the maximum conductances and a; the volt-
age and time dependent activation parameters. p is for temperature-scaling of the ion
currents.

The voltage dependencies are given by sigmoidal curves

Ao = 1/(1 + exp(-sj(V — Vy))) fori=d,r, sd [4]

Vo1 and s; are half-activation potentials and slopes, respectively, of the steady state acti-
vation curves (Fig. 3 B).
Time dependent activation of ai is given by

day/dt = ¢(aj.. — a))/7;; fori=r, sd [5]
and
a;=2aj., fori=d (6]

which means that the fast depolarizing current is modeled with instantaneous activation
without time delay:

Activation of the slow repolarizing current is modeled in a different way. It is directly
coupled to the slow depolarizing current:

dasr/dt = ¢(_nlsd - kasr)/Tsr [7]

with 1 as coupling constant and k as a relaxation factor.

Compared to the classical HH model (HODGKIN and HUXLEY 1952), we have in-
cluded two additional currents but we also have made major simplifications. First of
all, we do not go back to the rate constants ¢ and f which describe the state transitions
of the ion channels but directly refer to the voltage dependencies of activation which can
be approximated quite well with sigmoidal curves (a;.. in Equ. [4]). Equation [5] ac-
counts for the time delayed activation of a; with time constants 7; which here, as another
simplification, are voltage independent. Our variables a; correspond to the activation
variables m and n in the HH equations but there is no parameter for the variable h which
means we do not consider any inactivation. We also do not use power functions to calcu-
late the ionic conductances. The actual conductance is g; - a; (see Equ. [3]) which means
that the maximum conductance is multiplied by exactly the same value as it comes from
Equation [3] — not with its power of three or four.

Equation [7], which calculates the activation of the slow repolarizing current, seems
to be completely different. It is a reduced version of our original model where the slow
repolarizing current was modeled as a voltage and Ca-dependent current according to
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our experimental recordings from the cold receptor during changed Ca concentrations
and Ca-channel blockade which elucidated essential contributions of Ca dynamics to
the impulse pattern generation (SCHAFER et al. 1986, 1991). These are still considered
also in this simplified version: The parameter # reflects Ca inflow in dependence on the
depolarizing current Iy and leads to Ca accumulation on depolarization. The parameter k
serves for Ca relaxation, i.e. active elimination of intracellular Ca with Ca pumps de-
pending on the actual Ca concentration. Indeed, Ca concentration is not explicitly given
but it is reflected by the Ca-dependent variable a,.

The temperature dependencies of the ion currents cannot directly be recorded at the
cold receptors. Therefore, we again have used a simplified but physiologically plausible
approach (according to the findings from other neurons, see HILLE 1992). We have used
the same scaling factors for all voltage dependent currents.

The main temperature effects, relevant for Equations [5] and [7], come from the time
constants of activation for which we assume a 3-fold increase over a temperature in-
crease of 10°C, i.e. a Q¢ of 3.0:

¢ = 3.0 (T*TO)/IO. [8]

There is an additional temperature scaling of the maximum conductances which, how-
ever, has a Q¢ of only 1.3 and is only relevant for equation [3]. It has minor effects on
the principle model behavior and was mainly done for fine adjustment of the model data
with specific cold receptors characteristics:

p=13 (T-To)/10. 9]

To account for the effects of random dynamics we have applied Gaussian white noise
according to the Box-Mueller algorithm as described in Fox et al. (1988):

gy = (—4d - dt In(a))""? cos(2mb) [10]

with a, b random numbers between 0 to 1. Noise intensity is adjusted by the dimension-
less control parameter d. The noise value g, is directly added to the membrane potential:

Vipae = Vi + (V) dt + gy, [11]
The numerical parameter values:

(1.) equilibrium potentials: Vyq = V4 =50, Vi, = V., =-90, V| = -60 (in mV);
(2.) ionic conductances: g; = 0.1, gg= 1.5, g,=2.0, g¢q = 0.25, g, = 0.4 (in mS/cm?);
(3.) membrane capacitance: Cyy =1 (in uF/cmz)
gives a passive time constant: 7y = Cy/g; = 10 (in ms);
(4.) activation time constants: 7, = 2, 7,4 = 10, 7, = 20 (in ms);
(5.) slope of steady state activation: sq = s, = 0.25, sgq = 0.09;
(6.) half activation potentials: Voq = Vo, = =25, Vopgs =—40 (in mV);
(7.) coupling and relaxation constants for I : 7 =0.012, k=0.17;
(8.) reference temperature: Tg =25 (in °C).

These parameter values were chosen to obtain a period-two burst discharge at the refer-
ence temperature of 25 °C (Fig. 3 D, upper trace) according to the situation most often
observed in our experimental recordings. Figure 3 D also illustrates the voltage re-
sponses of the isolated subsystems. With only subthreshold currents (mid-trace in
Fig. 3 D) the oscillations are a little bit slower compared to the complete system where
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spike-generation obviously accelerates the rhythm. This is due to the resettings from
each spike which prevent the subthreshold oscillations to fully develop. With only
spike-generating currents (lowest traces in Figure 3 D) this system would be completely
silent with a stable membrane potential of about —60 mV close to the leakage potential
V, (horizontal line in the lowest diagram in Fig. 3 D). Voltage traces with spike-activity
that are also shown in this diagram were obtained with additional constant current injec-
tion. It is evident that the dynamics are totally different from that of the complete system
with coupled oscillations and spike-generation.

Remarkably, when the system has been adjusted to these specific dynamics, the full
variety of experimentally observed impulse patterns almost naturally evolves with simple
temperature scaling as implemented in the model equations.

3.2 Impulse Pattern at Different Temperature in Deterministic and Noisy Simulations

In Figure 4 we have once more plotted the most characteristic impulse sequences from
experimental recordings for direct comparison with the results from our modeling stud-
ies which are shown in the traces below. It can easily be seen that the model almost
perfectly mimics all types of cold receptor discharges. But it also becomes evident that
one particular type of pattern can only be simulated with addition of noise as we already
have expected from previous analysis of our experimental data (see 2.3). This is the pat-
tern which consists of a mixture of spike-generating and subthreshold oscillations (skip-
pings) that typically occurs in the upper temperature range, and can here be seen in both
experimental and modeling data (35 °C, left diagrams) but not in the lowest diagram
which is from a completely deterministic simulation (d =0). In this situation only the
addition of noise allows the subthreshold oscillations to randomly exceed the threshold
for spike-generation.

The second row shows tonic firing patterns which preferably occur in experimental
recordings at “normal” skin temperatures around 30 °C and which also can be seen in
our simulations with corresponding temperature scaling. Noise does not seem to have
major influence on the pattern generation. There is a regular tonic discharge because
each oscillation cycle succeeds to trigger a spike — with a single exception: at d = 0.5
one of the oscillation cycles obviously fails. The upper trace indicates that something
similar might happen also in experimental recordings: a spike is missing within an other-
wise regular tonic discharge. Although these are only singular events, their pure occur-
rence suggests that noise cannot only induce spiking in otherwise completely subthres-
hold oscillations (as shown in the left traces) but also can prevent impulse generation in
deterministically regularly spiking sequences. As we will see below, such situations can
cover very broad ranges of stimulus encoding.

In the next, third row of Figure 4 we are comparing electrophysiological recordings
and model simulations of different noise levels in the range of burst discharges. Here,
indeed, we cannot see a qualitative effect of noise. More random input simply seems to
induce more random fluctuations of spike-generation without any qualitative change of
the pattern.

This also seems to be the case at the lowest temperatures where the experimental
recordings often exhibit irregular tonic discharges. The deterministic simulations gener-
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ate completely regular discharges and it needs addition of noise to produce the more
realistically appearing irregular spike sequences. However, a qualitative change of the
patterns seems not to be associated with the presence of noise. But this might not be
the complete truth as we will see with a more thorough look at the interspike distribu-
tions and the return maps.

3.3 Temperature Dependent Bifurcations and Noise Effects

With linear temperature scaling our model shows continuous transitions between a mani-
fold of impulse patterns which is illustrated in Figure 5 with so-called bifurcation dia-
grams of interspike intervals to illustrate where qualitative changes of the system behav-
ior occur. Figure 5A shows the bifurcation diagram of the deterministic simulation
which is plotted again in Figure 5 B (in black) together with the data from noisy simula-
tions (in red and blue). Additionally, in Figure 5C, the frequency curves are plotted.
Moreover, in Figure 6, we have plotted the deterministic and noisy return maps (RM)
from different temperatures to further illustrate the most relevant transitions in the bifur-
cation diagrams.

As described above, it is necessary to add noise to simulate all relevant types of pat-
terns that can be recorded from peripheral cold receptors. This specifically holds true for
the mixed pattern of spike-generating and subthreshold oscillations at higher tempera-
tures which cannot be seen without noise. The deterministic simulation (Fig. 5 A) shows
a very abrupt transition from zero activity to regular firing between 35 and 34 °C and
accordingly, a sudden increase in the frequency plot (Fig. 5 C, black curve). There is
again an abrupt transition when tonic firing changes to burst discharges at about 28 °C
in a so-called period-adding bifurcation. More of such bifurcations can be seen towards
lower temperatures whenever an additional spike is added to the bursts. The resonant
behavior between spikes and subthreshold oscillations thereby changes from 1:1
(1 spike per oscillation cycle) to 4:1 (bursts of 4 spikes) until the bifurcation scenario
becomes completely different at about 15°C. In deterministic simulations, the transi-
tions from n to n + 1 resonances are rather abrupt. There are only very narrow ranges
where auto-resonances between the two subsystems lead to complicated fine structures
of the patterns (described in more detail in W. BRAUN et al. 2000). These fine structures
are destroyed already with very low levels of noise. Higher noise levels can even smooth
completely the bifurcation structures of the deterministic simulation and induce a variety
of mixed patterns, including the above mentioned “skippings”.

The bifurcation scenario of the deterministic simulation leads to a sawtooth-like fre-
quency curve (Fig. 5C, black curve): the frequency suddenly increases whenever the
lengthened oscillations can trigger one impulse more and then gradually decreases due
to the temperature dependent lengthening of the oscillations until the next spike is added.
Addition of noise also smoothes these multiple maxima. At d =0.5 (blue curve in Fig-
ure 5C) there is a broad range of almost constant frequency and, in accordance with the
experimental data, a frequency decline towards the extremes of the temperature range.

We will describe these transitions in more detail below but first we will pay attention
on another remarkable pattern which occurs when we further decrease the temperature.
At around 15 °C the regular bifurcation adding scenario is destroyed (Fig. 5A). Instead,
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Fig. 5 Plots of successive interspike-intervals (bifurcation diagrams) and spike-frequency plots of determin-
istic and noisy model simulations with linear temperature scaling from 38 °C down to 2 °C. (A) Determinis-
tic bifurcation diagram. (B) Deterministic bifurcation diagram (black dots, same as in (A)) compared to
noisy simulations with two different noise intensities d (red dots: d = 0.05, blue dots: d = 0.5). (C) Spike-fre-
quency of the deterministic and noisy simulations (same color code as in (B)) plotted as peri-stimulus-time
histograms (bin width: 2s). In (B) and (C), lower noise values (red) are overwriting the higher noise values
(blue) and the deterministic values (black) are dominating over the others.
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Fig. 6 Return maps of typical impulse patterns of the model from deterministic simulations (black dots)
and with addition of noise (red dots: d = 0.05, blue dots: d =0.5). Each plot consists of 3000 interval pairs
from simulations at constant temperatures, as indicated. According to Figure 3, the duration of a given inter-
spike interval at position n is plotted as abscissa value (ID,) and the duration of the immediately following
interval (at position n + 1) is plotted as ordinate value ID, .. ID stands for interval duration. The determinis-
tic black dots are dominant over the red dots (low noise) which, in turn, are dominant over the blue dots
(high noise). Single dots of periodic discharges are enhanced as circles. The 45° line indicates the position
of interval pairs of equal duration.

there is a suddenly increasing number of other types of bifurcations which soon leads to
completely “chaotic” discharges over a broad temperature range (between about 13 and
7°C) until again a tonically firing pattern, i.e. a period-one discharge, occurs. Much
effort has already been made for a better understanding of these transitions and the un-
derlying system dynamics (e. g. GILMORE et al. 1999, BRAUN et al. 2000, W. BRAUN et
al. 2000, FEUDEL et al. 2000, BRAUN et al. 2001) but there are still many aspects which
are awaiting further elucidation specifically with regard to the noise effects.

In the following we will have a more thorough look on such transitions between dif-
ferent dynamical states with special emphasis on the effects of noise. We first will de-
scribe the transition from skippings to bursts via the tonic firing pattern (which is typi-
cal for the upper temperature range) and than will focus on the transitions from burst to
tonic firing via “chaos” (which occurs at lower temperatures).
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3.3.1 From Skippings to Tonic Firing and Bursts

The impact of noise becomes most obvious in the upper temperature range with the oc-
currence of additional interval bands (Fig. 5 B, around 35 °C) which only can be seen in
the presence of noise (red dots: d = 0.05, blue dots: d = 0.5), while the deterministic sim-
ulation (black dots: d =0) is silent or regularly discharging. This means that noise can
induce spiking in previously subthreshold oscillations but also can induce skipping in
deterministically tonic discharges. This effect becomes stronger with increasing noise:
the bands of longer intervals are spreading over a broader temperature range.

The corresponding return map (Fig. 6, the same color code as in the bifurcation
diagrams) is drawn for 35 °C which is a deterministically subthreshold situation close-
ly above the transition to regular firing. There is, of course, no data from the sub-
threshold oscillations but there is the typical clustering from noisy simulations which
shows principally the same characteristics as already described for the experimental
data (see Fig. 2 B). At first, it might appear surprising that the distribution of the clus-
ters is narrowed with increasing noise (blue dots from high noise simulations are not as
widely scattered as red dots from low noise simulations). However, this can easily be
understood considering that the probability of spike-generation is increasing with in-
creasing noise which means that the probability for the occurrence of very long inter-
vals, i.e. long sequences of subthreshold oscillations, decreases. This effect is also
manifested in the increasing firing rate with increasing noise (Fig.5C, 35°C and
above). This is the range where stochastic resonance phenomena can occur (see Dou-
GLASS et al. 1993, WIESENFELD and Moss 1995) which, however, here we will not
discuss.

The situation drastically changes when we reach the deterministically tonic-firing
range, e. g. 34 °C, where addition of noise reduces the firing rate which is due to noise-
induced skippings (Fig. 5 B, C). The situation changes again, still in the deterministically
tonic-firing range, e. g. around 29 °C, where noise induced bursts increase the firing rate.
The probability of noise induced skippings, of course, is higher closer to the range of
deterministically subthreshold oscillations whereas noise induced bursts can more often
be expected in the neighborhood of the deterministically bursting range. Somewhere in
between, both effects should be balanced. This is the point where the deterministic and
noisy frequency curves are crossing again. Hence, within a sequence of regular period-
adding bifurcations, crossings of the frequency curves, where the noise effects are in-
versed, must not only be expected at each bifurcation point but also at these “equilib-
rium” points in between (Fig. 5 C). The coexistence of different patterns close to such
“equilibrium” points is also illustrated in the return map at 30 °C (Fig. 6). At d =0.05
clusters of short intraburst-intervals occur and at d = 0.5 also skippings are indicated.
This return map has its experimental counterpart in Figure 2 C where, of course, we can-
not see the deterministic period-one fixed-point which here gives a single dot on the 45°
line (in Fig. 6 emphasized as a circle).

The simulated return map from 20 °C in Figure 6 has its experimental counterpart in
Figure 2 D. These return maps are exclusively built up from burst discharges. The deter-
ministic simulation induces a period-three pattern where the burst-pause is followed by
two intraburst-intervals until exactly the same sequence starts again (a 3:1 resonance
between spikes and oscillations). Noise seems not to disturb this burst pattern very

312 Nova Acta Leopoldina NF 88, Nr. 332, S. 293-318



Temperature Encoding in Peripheral Cold Receptors: Oscillations, Resonances, Chaos, and Noise

much. Of course, there are noise induced fluctuations around the deterministic points
whereby the interval pairs with burst pauses preferably extend along the x-and y-axis.
This effect, is also seen in the experimental data (Fig. 2 D) and has already been de-
scribed there. However, in the model data, there additionally is an elongation of the clus-
ter of intraburst intervals along the ordinate and of short-long intervals towards the 45°
line. We will come back to these phenomena below because it might indicate that we are
approaching the range of deterministic chaos.

3.3.2 From Bursts to Tonic Firing — via Chaos

The return map which is drawn for 12 °C (Fig. 6) already reflects chaotic dynamics.
Even in the deterministic simulation the interval pairs do not form individual dots — ac-
cording to a certain periodic discharge — but are scattered along distinct lines (see also
W. BrAUN et al. 2000). Remarkably, the particular shape seems already anticipated by
the noisy simulations from 20 °C (see above) although this was from a deterministically
regular period-3 discharge far away from the chaotic regime. At 12 °C noise does not
change the principle structure of the return map.

However, distinct modifications can be seen when we further decrease the tempera-
ture and thereby pass through the deterministic chaos, e. g. return maps that show addi-
tional elongations at the 45° line and then attain almost rectangular and later parabolic
shapes (see also FEUDEL et al. 2000). The return map that we have drawn from 8 °C
(Fig. 6) is somehow at the transition from the more rectangular to the more parabolic
shape. The most interesting effects, however, occur with the addition of noise which
drastically changes the distribution. At d =0.05 the dots are still scattered around the
deterministic curve but with extraordinarily strong fluctuations. However, at d = 0.5 al-
most nothing seems to be left from the original parabolic distribution. This return map
rather resembles those from experimental recordings with irregular bursts as shown in
Figure 2E. There is a broad distribution along the 45° line with some extensions to
short-short, long-short and short-long interval pairs which is the typical burst pattern.
The area where the deterministic curve crosses the 45° line is almost free.

Remarkable noise effects can also be seen in the return map at 6 °C (Fig. 6) which is
below the chaotic regime in the deterministically period-one situation. Accordingly, the
deterministic simulation gives a single dot (enhanced as circle). But already low noise of
d =0.05 leads to extremely strong fluctuations which are clearly different from a ran-
dom, even distribution around the deterministic fixed-point. The shape rather reminds
to a filled triangle (or parabola?). Further increase of noise to d = 0.5 destroys this partic-
ular shape and leads to a rather unstructured distribution, although with some preferences
for short-short, short-long and long-short intervals according to very irregular burst
discharges. It corresponds to the experimental return map shown in Figure 2F, including
some details as described there.
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4. Summary and Conclusions

We have described the impulse patterns of extracellular recordings of peripheral cold
receptors as an example of an enormously flexible neuronal impulse pattern generator.
To our knowledge, so far no other neuron is known that passes through such a manifold
of patterns as a function of the physiologically relevant input which here is the tempera-
ture. Synaptic interactions can be excluded, which implies that these patterns are gener-
ated by intrinsic properties of nerve endings.

Supplementary to the electrophysiological experiments, we use computer modeling
studies to attain further insights into the underlying neuronal dynamics. Indeed, several
models of neuronal oscillations already exist and partly use similar approaches as de-
scribed here (e.g. WANG 1994, CHAY et al. 1995, LONGTIN and HINZER 1995). How-
ever, most of these models consist of a very long set of equations with many different
ion currents and with complex activation and inactivation dynamics according to the
classical HH-type equations. Instead, our model uses a strongly simplified approach
and is systematically reduced to only four dimensions, i.e. differential equations. It
nevertheless includes the physiologically relevant ion currents as suggested by the ex-
perimental data, and can simulate continuous transitions between a manifold of impulse
patterns as recorded from peripheral cold receptors. Similar transitions, although not all
together, have been seen in many other neurons. Hence, impulse generation with sub-
threshold oscillations seems to be a widespread principle of information processing in
the peripheral and central nervous system although the specific ionic currents might be
different.

This generic property was the reason for examining the model’s dynamics from the
viewpoint of a generalized neuronal impulse pattern generator, i.e. not to focus on the
details of ion currents but on their principle functional interrelations. As a promising
approach, suggested by recent analysis of the model’s dynamics (see BRAUN et al.
2000, W. BRAUN et al. 2000, FEUDEL et al. 2000), we have examined the resonant behav-
ior between the spike-generator and subthreshold oscillator. Moreover, we have paid
particular attention to the effects of noise, because it was clear from previous theoretical
and modeling studies (e.g. LONGTIN et al. 1991, LONGTIN and HINZER 1995, WIESEN-
FELD and Moss 1995, BULSARA and GAMMAITONI 1996) as well as from experimental
data (e.g. BRAUN et al. 1980, 1984b, SCHAFER et al. 1986, 1991, BRAUN et al. 1994,
NEIMAN et al. 1999, WHITE et al. 2000) that nonlinear, cooperative noise-effects, can
become relevant factors for neuronal encoding. The results that we have described here
essentially reflect noise mediated resonance behavior of a minimal model of oscillating
and spike-generating mechanisms.

Not only the model equations but also the model’s behavior is comparably simple
when we look at the two subsystems separately: the spike generator is silent without
the input from the oscillator and the subthreshold mechanisms can only produce regular
oscillations without the spike-generator. It is the coupling of these two subsystems that
leads to more complex activity patterns, and it needs noise to see the full variety of them.

We have illustrated the transitions between the different types of impulse patterns
using a simple but physiologically plausible temperature scaling. Qualitatively identical
transitions can be expected with other scaling parameters (an example is shown in
BRrAUN et al. 2000). Temperature scaling has the advantage that we can demonstrate the
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efficiency of this approach in direct comparison with our own experimental data from
cold receptors, as shown in Figure 1 and Figure 2. In comparison with the model data
from Figure 5 and Figure 6 it is evident that this minimal model successfully mimics
the experimental data in remarkable detail.

To briefly summarize the major characteristics, it seems easiest to begin in the range
of bursting activity which indicates a very strong coupling between subthreshold oscilla-
tions and spike-generating mechanisms. Strong depolarization of the subthreshold oscil-
lations can repeatedly activate the spike generating mechanisms. The number of spikes
per oscillation cycle simply depends on strength and duration of the slow-wave depolar-
ization. Noise smooths the deterministically abrupt transitions but does not qualitatively
change the impulse patterns. The same holds true up to 1: 1 resonances, i. e. single-spike
discharges.

The situation changes when amplitude and/or duration of the subthreshold oscilla-
tions are too small for spike generation as it is the case in the upper temperature range.
There is an intermediate state where the subthreshold oscillations can still activate the
spike-generating processes, but only with the help of stochastic fluctuations. However,
noise also can prevent spike generation in the otherwise regularly firing mode. Such
“cooperative noise effects” (BULSARA and GAMMAITONI 1996, GAMMAITONI et al.
1998) were first described — as far as we know — more than 50 years ago (BRINK et al.
1946) with chemical excitation of the nerve axons. Many years later, their detection in
experimental recordings from cold afferents has led to the first theoretical description of
sensory transduction with oscillations and noise (BRAUN et al. 1980). During recent
years, such patterns have been recorded in many other peripheral sensory afferents
(BRAUN et al. 1984, SCHAFER et al. 1988, 1989, BRAUN et al. 1990, HEINZ et al. 1990,
BRAUN et al. 1994, SCHAFER et al. 1995), and also play a role in information processing
in the central nervous system (e. g. LLINAS and YAROM 1986, ALONSO and LLINAS 1989,
KLINK and ALONSO 1993, LAMPL and YAROM 1993, PARE et al. 1995). Remarkably, sim-
ilar effects can become of pathophysiological relevance in systemic functions, for ex-
ample, when random components interfere with periodic processes in the course of psy-
chiatric disorders (see e. g. HUBER et al. 1999, 2000 b, 2002).

The impulse patterns which we have seen in the lower temperature range are far from
being completely understood. The deterministic simulations clearly show a broad range
of “deterministic chaos” which seems to occur in a transitory state when the oscillatory
dynamics change to pacemaker activity (BRAUN et al. 2000). Dynamical system theory
indicates a route through deterministic chaos via homoclinic bifurcations (W. BRAUN et
al. 2000, FEUDEL et al. 2000). In noisy simulations and particularly in experimental re-
cordings, however, it cannot be immediately seen whether the fluctuations in the im-
pulse sequences are due to noise, i.e. high-dimensional dynamics, or reflects chaotic
low-dimensional dynamics. With use of the so-called »recurrence-method« (PIERSON
and Moss 1995), indeed, we found statistically significant indications of deterministic
chaos in experimental recordings (BRAUN et al. 1999) and noisy simulations (BRAUN et
al. 2001) which occur preferably at low temperatures around the transitions from tonic-
to-bursting activity, where chaotic dynamics can be expected. But the model also exhib-
its remarkable noise effects in the deterministically periodic situations which can be seen
best in the return maps (Fig. 6, 20 °C and 6 °C), and which reflect “cooperative” effects
between the nonlinear systems dynamics and noise which are not yet fully understood.
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With contribution of noise there are obviously very complex dynamics also out of the
chaotic regime which reaches far into the range of deterministically regular discharges.
The high rate of agreement of the noisy simulations and experimental data indicate that
such cooperative noise effects are not only model specific characteristics, but might also
be of relevance for neuronal transduction processes in real life, as it has already been
experimentally proven for other situations, i.e. noise induced “skippings”.
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“Nature uses only the longest threads to weave her patterns,
so each small piece of her fabric reveals the organization of
the entire tapestry.”

Richard FEYNMAN
The character of physical law.

A biological version of the famous “Bauhaus principle” — form follows function — is
perhaps that — form and pattern dictate function —. This is a concept that biologists are
very familiar with since the shape and structures of biological entities such as proteins,
nucleic acids, (sub)cellular assemblies, organs, extremities or even behavioral aspects of
living communities are shaped to optimally provide a species for survival. However, pat-
tern and complexity are by no means characteristics of living systems only. They are
created by physical and chemical principles and are observable in non-living systems
as well. The fact that complex biological patterns rely on simple deterministic substruc-
tures has become a very “trendy” scientific paradigm. However, the recent increase in
our biological knowledge has drawn the attention away from a mere description of the
inventory of components towards a description of the interactions of the various players.
In this manner, biological complexity is the result of a large number of interactive con-
nections of many components, which form a dynamic network. Unfortunately, networks
are intrinsically difficult to understand. This is due to a variety of parameters, among
them the high complexity of such networks, the diversity of interactions and of course
dynamical aspects of networks because patterns can vary over time and can influence
each other. Only these few characteristics demonstrate that the description of complex
biological systems must use mathematical models in order to capture the central fea-
tures of the phenomenon. This in turn calls for an interdisciplinary approach to study
biological networks and pattern formation, which was adequately addressed during this
symposium.

The session entitled “Understanding spatiotemporal patterns in biology” included
five presentations. Three talks were given by biologists, one by a mathematician and
one by a physicist. The aim of the organizers was to look at new experimental data in
light of fostering a discussion between the three scientific disciplines. As prime exam-
ples of today’s powerful genomic era two talks focused on spatiotemporal patterns with-
in gene regulatory networks. T. HOLSTEIN from the Darmstadt University of Technology
talked about transcriptional gene regulatory interactions required for the self organiza-
tion and pattern formation in Hydra. M. MITTAG (Friedrich Schiller University Jena) pre-
sented her work on the molecular mechanisms of circadian clocks in microalgae, which
involves posttranscriptional gene regulatory processes. U. RASCHER (Columbia Univer-
sity) showed a remarkable image analysis of spatiotemporal variations in the photosyn-
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thetic activity in simple leaves, and M. T. HUTT (Darmstadt University of Technology)
talked on the effect of biological variability on spatiotemporal patterns. Lastly, H. MAL-
cHow from the University of Osnabriick gave an overview on spatiotemporal pattern
formation in population dynamics. Below, I have summarized my personal synopsis of
the five talks specifically focusing on two questions: (i) Does nature have an unlimited
choice of players and patterns, or must it select from just a few? (ii) Are the presented
data surprising examples or do they just reflect our limited level of knowledge?

Thomas HOLSTEIN talked about the “De-novo Formation of the Hydra Head Organi-
zer” as an example of a so-called signaling center or organizer tissue. Signaling centers
can be defined as an assembly of a small number of embryonic cells that execute posi-
tional information for the definition of the main body axis of a developing multicellular
organism. The cells secrete growth factors which act as morphogens during cell differ-
entiation. At its core, the phenomenon deals with the problem of symmetry breaking and
pattern formation by chemical diffusion as initially proposed by Alan TURING in 1952.
TURING described a hypothetical chemical reaction that could generate spontaneous
symmetry breaking, leading to stable spatial patterns, in an initially uniform mixture of
chemical compounds. Hans MEINHARDT and Alfred GIERER later on showed that short-
range activation and long-range inhibition are the chief elements of the Turing patterns.

HoOLSTEIN convincingly demonstrated that the Hydra head organizer represents a
prime example of a reaction-diffusion system and that it relies on the molecular compo-
nents of the Wnt pathway and the TGFf/Bmp antagonist Chordin. The molecules act
during the de-novo formation of the head organizer as well as in cell aggregates derived
from suspensions of dissociated cells. The highly conserved HyWnt and HyBral genes
are expressed in these cells; they activate surrounding cells and generate a field of lat-
eral inhibition as expected from an archetypical Gierer/Meinhardt “short-range activa-
tion/long-range inhibition” system. HOLSTEIN’s data further verify that the pattern for-
mation system of higher animals also exists in early multicellular animals, which
demonstrates an astonishing evolutionary conservation of a self-organizing system. On
a genetic level, the data conclude that the expression of only a few regulatory genes in
a few cells are sufficient to execute the body plan of a whole organism. Transcription
factors play a central role in the function of signaling centers and thus, on a biophysical
level the phenomenon relies on the interaction between protein components and DNA
molecules.

However, transcriptional control is not everything. Posttranscriptional regulatory phe-
nomena as well as translational control can contribute to spatiotemporal phenomena as
well. This was demonstrated by Maria MITTAG, who presented an overview of work from
her laboratory on the molecular analysis of circadian clocks in microalgae using the eu-
karyotic microalgae Gonyaulax polyedra (G. polyedra) and Chlamydomonas reinhardtii
(C. reingardtii) as model systems. Both organisms are characterized by several “rhyth-
mic” characteristics such as cell aggregation, photosynthesis, cell division and biolumi-
nescence, and as a consequence provide amenable experimental systems to study
temporal biological phenomena. Although transcriptional regulation as well as phosphor-
ylation and dephosphorylation events clearly contribute to the circadian phenomenon,
both organisms are additionally characterized by very interesting posttranscriptional reg-
ulatory circuits. In particular, circadian-controlled RNA-binding proteins, which specifi-
cally recognize UG-repeat elements within the 3’-untranslated regions (3'-UTR) of cer-
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tain mRNAs. In G. polyhydra one such protein is called CCTR for “circadian controlled
translational regulator” due to the fact that its binding activity changes over the day-night
cycle. The analogous “clock-controlled” protein in C. reinhardtii was termed CHLAMY
1 and presumably acts as a translational repressor during the night-phase of the
organism. Target mRNAs for CHLAMY 1 have been found to encode proteins involved
in metabolic reactions to fixate nitrogen and carbon dioxide, which nicely demonstrates
that complete metabolic pathways can be regulated by circadian RNA-binding pro-
teins.

Together, the data demonstrate that the circadian phenomenon, at least in these two
organisms, is controlled like any other regulatory process in living systems, on the var-
ious levels of gene expression. However, how the identified molecular components con-
tribute to such parameters as the amplitude, the phase and the period of a chronobiologi-
cal phenomenon, is not clear up to now and represents one of the more challenging
questions in the field.

Uwe RASCHER contributed a remarkable set of data. By using non-invasive chloro-
phyll fluorescence measurements he demonstrated the presence of horizontal variations
in the steady state photosynthetic activity within individual leaves of the crassulacean
acid metabolism (CAM) plant Kalanchoé daigremontiana. The CAM cycle represents a
well-studied biochemical carbon acquisition reaction in higher plants, which is charac-
terized, among other features, by a distinct circadian pattern of carbon dioxide exchange.

The chlorophyll fluorescence measurements by RASCHER and colleagues revealed
propagating wave fronts in the photosynthetic efficiency with clusters of increasing and
decreasing activity as well as areas that are out-of-phase. The data were collected by
using significantly improved charged coupled device (CCD) camera technology in com-
bination with sophisticated image acquisition software. The spatial and temporal activity
patterns could not be correlated with leave tissue substructures since the leaves consist of
assemblies of identical tightly packed cells. Therefore, the circadian rhythm of the CAM
reaction cycle seems to be the result of a dynamic pattern of independently initiated var-
iations in the photosynthetic efficiency with every activity center representing a bio-
chemical oscillator that operates independently in space and time. Although the de-
scribed phenomenon is to some extend “iconoclastic” — simple leaves can no longer be
viewed as horizontally homogeneous biochemical reaction units — it resembles other bio-
logical pattern formation processes such as the generation of periodic pulses of a chemi-
cal attractant during colony formation of the slime mold Dictiostelium discoideum or the
above described “reaction-diffusion” systems that act as morphogens during early em-
bryogenesis. Lastly, RASCHER’s data provided a very nice example on how technologi-
cal breakthroughs can lead to new interpretations of what is thought to be a well-under-
stood phenomenon.

Biochemical oscillators such as the one’s observed and described in RASCHER’S talk
were used by Marc-Thorsten HUTT as a theoretical model system. This is justified based
on the fact that biological self-organization can be mathematically described by treating
the various interacting elements of a biological network as coupled nonlinear oscillators.
In such a system, “noise” has been shown to be an important determinant for pattern
formation, and HUTT now asked the question how “disorder” or in other words “varia-
bility” might impact spatiotemporal phenomena. He was able to demonstrate that varia-
bility in a system of hypothetical biochemical reactions can induce spatial waves and
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long-range spatiotemporal patterns provided that certain conditions are met. Thus, varia-
bility in non-linear systems may provide a dynamic attribute to the network.

Lastly, HUTT’s data nicely demonstrate how numerical simulations can function as a
seeding point for theory-driven biological experiments. After all, it was Albert EINSTEIN
who said: “Die Theorie bestimmt, was wir beobachten kénnen.” (““Theory determines the
observable.”) Within this context it will be interesting to see whether the “theoreticians”
will be able to keep up with analyzing and interpreting the immense amounts of experi-
mentally-derived data from such fields as genomics, proteomics or neurobiological net-
works. If so, without any doubt, experimental biologists will benefit.
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With 2 Figures

Abstract

The dynamics of spatial and spatiotemporal pattern formation in nonlinear biosystems far from equilibrium
is of growing interest and many mechanisms of structure generation are not known yet. The main aim of mod-
eling biological population dynamics is to improve the understanding of the functioning of food chains and
webs as well as their dependence on internal and external conditions. Hence, mathematical models of bio-
logical population dynamics have not only to account for growth and interactions but also for spatiotemporal
processes like random or directed and joint or relative motion of species, as well as the variability of the en-
vironment. Early attempts began with physico-chemical diffusion, exponential growth and Lotka-Volterra
type interactions. These approaches have been continuously refined to more realistic descriptions of the de-
velopment of natural populations. The aim of this paper is to give an extensive introduction to the subject
and the bibliography. The fascinating variety of spatiotemporal patterns in such systems and the governing
mechanisms of their generation and further dynamics are described and related to plankton.

Zusammenfassung

Die Dynamik der rdumlichen und raumzeitlichen Strukturierung in nichtlinearen Biosystemen fern vom
Gleichgewicht ist von wachsendem Interesse, und viele Mechanismen der Strukturbildung sind noch unklar.
Das Ziel der mathematischen Modellierung der Dynamik biologischer Populationen ist ein besseres Ver-
standnis der Wirkungsweise von Nahrungsketten und -netzen sowie ihrer Abhéngigkeiten von inneren und
dulleren Bedingungen. Mathematische Modelle biologischer Populationsdynamik miissen nicht nur Wachs-
tum und Wechselwirkungen beschreiben, sondern auch raumzeitliche Prozesse wie die zufillige oder gerich-
tete und gemeinsame oder relative Bewegung von Spezies und die Variabilitit der Umwelt. Die ersten Ver-
suche begannen mit physiko-chemischer Diffusion und Lotka-Volterra-Wechselwirkungen. Diese Ansitze
sind stetig zu realistischeren Beschreibungen der Entwicklung biologischer Populationen verfeinert worden.
Die vorliegende Arbeit gibt eine ausfiihrliche Einfiihrung in das Forschungsgebiet und die Bibliographie.
Die faszinierende Vielfalt der raumzeitlichen Strukturen in solchen Systemen und die wichtigsten Mechanis-
men ihrer Erzeugung und weiteren Entwicklung werden anhand der Planktondynamik beschrieben.

1. Introduction to Reaction-Diffusion Models of Population Dynamics

The exploration of pattern formation mechanisms in nonlinear complex systems is one of
the central problems of natural, social, and technological sciences. The development of
the theory of self-organized temporal, spatial or functional structuring of nonlinear sys-
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tems far from equilibrium has been one of the milestones of structure research (HAKEN
1977, NicoLis and PRIGOGINE 1977). The occurrence of multiple steady states and tran-
sitions from one to another after critical fluctuations, the phenomena of excitability, os-
cillations, waves and, in general, the emergence of macroscopic order from microscopic
interactions in various nonlinear nonequilibrium systems in nature and society has re-
quired and stimulated many theoretical and, if possible, experimental studies. Mathemat-
ical modeling has turned out to be one of the useful methods to improve the under-
standing of such structure generating mechanisms. The classical method for space-time
continuous population-dynamical systems in theoretical ecology and biology is the use
of ordinary and partial differential equation models
X, (7t -
PAED _ iz, ) -9

N —
x(ﬁ,-xi(f,t)—ZD,;,- [vx,-(?,t)D;i: 1,2,....N. ]
=1

The vector X contains the N population densities X; at time ¢ and position 7. f is the
vector of the growth and interaction functions f;, i.e., it describes for instance exponen-
tial or logistic growth and mutualism, predation or competition. A is the set of system
parameters. V; is the velocity vector of species i, Dj; is the matrix of self- and cross-dif-
fusivities and V the Nabla operator. A good introduction to the latter field has been pro-
vided by HOLMES et al. (1994). All parameters might be state-dependent, i. e., dependent
on time, space and population density due to environmental variability.

In this paper, the mobility of populations is simply modeled as neutral Fickian diffu-
sion with constant diffusion coefficient D;. Equation [1] then reads

aXi(Fv t)
o

where 4 = V? is the Laplace operator.
The simplest form of nonlinear growth of a single population is, maybe, the exponen-
tial growth with

f=rX (3]

=filX(F, 1), A] + DidX;(F,1);i = 1,2,...,N; [2]

where r is the constant positive growth rate. The latter has been assumed by MALTHUS
(1798) as a model for the growth of mankind. Coupling a localized population patch to
diffusion, one finds an explosive propagating population front with velocity

VF = 2\/@ [4]

what has been estimated by LUTHER (1906) for chemical reactions. Finally, one obtains a
spatially uniform growing population. It was VERHULST (1838) who introduced a carry-
ing capacity K in order to limit the population growth,

fer(l—%). [5]

Now, any initial population size will converge to K. Considering again the coupling of a
localized patch to diffusion, one finds the surprising result that vy = 2+/rD is now the
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minimum front speed (FISHER 1937, KOLMOGOROV et al. 1937). FISHER applied this sim-
ple model to the spread of an advantageous gene in a population, however, this so-called
logistic limitation of growth is often used in population-dynamical models for the lowest
trophic levels. The only stable solution for large times is a uniform distribution of the
population at its carrying capacity. For populations with a strong Allee effect (ALLEE
1931, ALLEE et al. 1949), i.e., the existence of a minimum viable population size K_,
one finds two stable population densities, extinction (X = 0) and survival (X = K). The
growth function reads

X X

Populations with initial densities less than K_ go extinct whereas larger populations sur-
vive at their carrying capacity K. Here, localized initial population patches also show a
critical spatial size (SCHLOGL 1972, N1TZAN et al. 1974, EBELING and SCHIMANSKY-GEI-
ER 1980, MaLcHOW and SCHIMANSKY-GEIER 1985, LEwis and KAREIVA 1993,
PETROVSKII 1994). Patches greater than the critical size will grow and survive, the others
will decay and go extinct. This is sketched in Figure 1.

Bistability and the emergence of a critical spatial size do not necessarily require an
Allee effect, also logistically growing preys with a parameterized predator of Holling-
type II or III functional response (HOLLING 1959) can exhibit two stable steady states
and the related hysteresis loops (cf. LupwiG et al. 1978, WISSEL 1989). However,
finally one finds spatially uniform population distributions. Only one exception is
known for single population systems: Bistable systems with Dirichlet boundary condi-
tions can exhibit stable solutions with one spatial minimum or maximum value
(JETSCHKE 1979).

The whole variety of temporal, spatial, and spatiotemporal population patterns can be
found in models of two and more interacting populations. The pioneers in this field have
been LoTKA (1925) and VOLTERRA (1926) with their simple prey-predator model

fi=aXi —bnXy;  fr =X —aX, [7]

Y

Fig. 1  Sketch of the propagation of a population wave.
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with prey X; and predator X;, e.g. snow-shoe hares and silver foxes or, in the case of
VOLTERRA, adriatic fishes. All parameters are greater than zero. This model shows the
typical prey-predator oscillations, however, they are structurally unstable, i.e., it is not a
stable limit cycle. The general Volterra systems

N
fi= (“i+2b,;,-X.f>Xi; i=1,2,....N; 18]
j=1

describe all basic possible interactions with negative, positive or vanishing parameters,
though these models are not very realistic and, therefore, not of much use in ecological
modeling.

The already mentioned Holling-type response terms (HOLLING 1959) which are also
known from Monod or Michaelis-Menten saturation models of enzyme kinetics (MI-
CHAELIS and MENTEN 1913, MoNoD and JAcoB 1961) make the Volterra models more
realistic. Here is an example for a N-component food chain:

Xfli—] X’_’li
Mxi—aixg"f —a,-HmXM; i=1,2,...,N. [9]
The chain needs “boundary conditions”, e. g., Xy — oo and Xy, = const. The ¢; are the
efficiencies of conversion of biomass of species i—1 into species i, a; is the maximum
predation rate of species i, d; its mortality rate and H; the half saturation constant of its
functional response. The exponents n;_; and n; = 1,2 stand for Holling-type 11, III re-
sponses, respectively. The m; = 1,2 describe natural mortality or intraspecific competi-
tion. For the later on often mentioned and used Scheffer model of plankton dynamics
(SCHEFFER 1991a) one has N =2: X, = const (nutrients), X; (phytoplankton), X, (zoo-
plankton), X5 = const (planktivorous fish), no =ny =1, n, =2, m; =2, my = 1:

fi = eiq;

0 2 X
= — X -0 X —an——X 10
h 61041H0+X0 1 —01X] OézH1+Xl 25 [10]
X, X2
= - 5| X—a;—2—X;. 11
f (ezaz H X, 2) —Q3 HI + X2 3 [11]

Further scenarios of pattern formation in reaction-diffusion systems will be described
now, using models of plankton dynamics as an example.

2. Models of Plankton Population Dynamics: Overview and Bibliography

Because of its apparent importance, the dynamics of plankton systems have been under
continuous investigation during more than a hundred years. From the very beginning,
regular plankton studies have combined field observations, laboratory experiments and
mathematical modeling. In the 17th century, the Dutch pioneer microscopist Anton VAN
LEEUWENHOEK was probably the first human being to see minute creatures, which he
called animalcules, in pond water (HALLEGRAEFF 1988). The German Victor HENSEN
who organized Germany’s first big oceanographic expedition in 1889 (HENSEN 1892,
Porep 1970) introduced the term plankton (due to the Greek planktos = made to wan-
der).
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It was in the 19th century that fisheries stimulated the interest in plankton dynamics
because strong positive correlations between zooplankton and fish abundance were
found. The already mentioned German plankton expedition of 1889 was mainly moti-
vated by fisheries interests. At the same time, fishery science began to develop. In the
beginning of the 20th century, first mathematical models were developed in order to un-
derstand and to predict fish stock dynamics and its correlations with biological and phys-
ical factors and human interventions (cf. CUSHING 1975, GULLAND 1977, STEELE
1977).

Phytoplankton are microscopic plants that drive all marine ecological communities
and the life within them. Due to their photosynthetic growth, the world’s phytoplankton
generate half of the oxygen that mankind needs for maintaining life, and it absorbs half
of the carbon dioxide that may be contributing to global warming. It is not only oxygen
and carbon dioxide but there are also other substances and gases that are recycled by phy-
toplankton, e. g. phosphorus, nitrogen and sulphur compounds (BAIN 1968, DUINKER and
WEFER 1994, MALIN 1997, RITSCHARD 1992). Hence, the phytoplankton is one of the
main factors controlling the further development of the world’s climate, and there is a vast
literature supporting that (cf. CHARLSON et al. 1987, WILLIAMSON and GRIBBIN 1991).

Zooplankton are the animals in plankton. In marine zooplankton both herbivores and
predators occur. Herbivores graze on phytoplankton and are eaten by zooplankton preda-
tors. Together, phyto- and zooplankton form the basis for all food chains and webs in the
sea. In its turn, the abundance of the plankton species is affected by a number of envi-
ronmental factors such as water temperature, salinity, sunlight intensity, biogen availabil-
ity, etc. (RAYMONT 1980, SOMMER 1994). Temporal variability of the species composition
is caused by seasonal changes and trophical prey-predator interactions between phyto-
and zooplankton.

The contemporary mathematical modeling of phytoplankton productivity has its roots
in the work by FLEMING (1939), IvLEV (1945), RILEY (1946), ODUM (1956) and others.
A review of the developments has been given by DrooP (1983). Recently, a collection of
most frequently used models has been published (BEHRENFELDT and FALKOWSKI 1997).

The control of phytoplankton blooming by zooplankton grazing has been modeled
first by FLEMING (1939), using a single ordinary differential equation for the temporal
dynamics of phytoplankton biomass. Other approaches have been the construction of
data fitted functions (RILEY 1946, 1963) and the application of standard Lotka-Volterra
equations to describe the prey-predator relation of phytoplankton and zooplankton (SE-
GEL and JACKsON 1972, DuBois 1975, LEVIN and SEGEL 1976, VINOGRADOV and MEN-
SHUTKIN 1977, MIMURA and MURRAY 1978). More realistic descriptions of zooplankton
grazing with functional responses to phytoplankton abundance have been introduced by
IvLEV (1945) with a certain modification by MAyzAuD and PouLET (1978). Holling-type
response terms are just as much in use (cf. STEELE and HENDERSON 1981, 1992a, b,
SCHEFFER 1991 a, b, 1998, MALcHOW 1993, PascuaL 1993, TRUSCOTT and BRINDLEY
1994 a, b). Observed temporal patterns are the well-known stable prey-predator oscilla-
tions as well as the oscillatory or monotonous relaxation to one of the possible multiple
steady states. Excitable systems are of special interest because their long-lasting relaxa-
tion to the steady state after a supercritical external perturbation like a sudden tempera-
ture increase or nutrient inflow is very suitable to model red or brown tides (BELTRAMI
1989, 1996, TruscoTT and BRINDLEY 1994 a, b).
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Concerning the temporal variability of plankton species abundance, the limits of its pre-
dictability are of particular interest. At early stages, the development of mathematical
models of marine ecosystems was driven by the idea that the more species were explici-
tely included into the model the higher would be its predictive ability. As a result, a
number of many-species models appeared allowing for a detailed structure of the food
web of the community (cf. DEANGELIS 1992, JGRGENSEN 1994, Yopzis 1994). How-
ever, the real predictive ability of this class of models is not very high and rarely ex-
ceeds a few weeks. Moreover, an increasing number of model agents may sometimes
even worsen the properties of the model. This apparent paradox can be explained in
terms of dynamical chaos (MAY 1974). Although the strict evidence of chaotic behavior
of natural populations is still absent, there appear stronger and stronger indications in
favor of its existence (SCHEFFER 1991Db, 1998, CosTATINO et al. 1995, DENNIS et al.
1995, CostATINO et al. 1997, GODFRAY and HASSELL 1997, HuisMAN and WEISSING
1999). Chaotic population dynamics essentially changes the approach to the system pre-
dictability and makes conceptual few-species models of as much use as many-species
ones. Moreover, few-species models can sometimes be even more instructive since they
take into account only the principal features of the community functioning (cf. PASCUAL
1993, PETROVSKII and MALcHOW 1999, 2001).

Another interesting problem is the dynamics of externally forced systems. This ide-
ally periodic forcing appears rather naturally due to daily, seasonal or annual cycles of
photosynthetically active radiation, temperature, nutrient availability, etc. (EvANS and
PAarsLow 1985, Popova et al. 1997, RYABCHENKO et al. 1997, TrRuscotT 1995). Natural
forcings are of course subject to a certain environmental noise. A number of forced mod-
els for parts or the complete food chain from nutrients, phytoplankton and zooplankton
to planktivoros fish has been investigated and many different routes to chaotic dynamics
have been demonstrated (KUzZNETsoV et al. 1992, RINALDI and MURATORI 1992, Asc1oT1
et al. 1993, DovERt et al. 1993, RINALDI et al. 1993, STEFFEN and MALCHOW 1996a,b,
SCHEFFER et al. 1997, STEFFEN et al. 1997).

The abundance of plankton species is not only subject to temporal changes but also
depends on space. The distinct spatial heterogeneity of plankton distribution (patchiness)
is found in many field observations (STEELE 1974, 1978, FAsHAM 1978, MAcKAS and
Boyp 1979, GREENE et al. 1992, ABBoTT 1993). This phenomenon takes place on all
scales, from centimeters to thousands of kilometers. A number of explanations has been
suggested, particularly, relating the spatial structure of a plankton system to marine tur-
bulence (PLATT 1972) or to the inhomogeneity of the temperature field in the ocean
(DENMAN 1976). A well-studied stripy plankton pattern is due to the trapping of popula-
tions of sinking microorganisms in Langmuir circulation cells (STOMMEL 1948, LEIBO-
VICH 1993). Other physically determined plankton distributions like steep density gradi-
ents due to local temperature differences, nutrient upwelling, turbulent mixing or internal
waves have been reported too (YODER et al. 1994, FRANKS 1997, ABRAHAM 1998).

On a small spatial scale of some ten’s of centimeters and under relative physical uni-
formity also differences in the “diffusive” mobility of individuals and the ability of loco-
motion might create finer spatial structures, e.g. due to bioconvection and gyrotaxis
(PratT 1961, WINET and JAHN 1972, PEDLEY and KESSLER 1992, TiMmm and OKUBO
1994). Till now not for plankton but for certain bacteria, the mechanism of diffusion-
limited aggregation (WITTEN and SANDER 1981) has been proposed and experimentally
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proven for the spatial fingering of colonies (MATSUSHITA and Fujikawa 1990, BEN-
JACOB et al. 1992).

Thus, mathematical models of plankton population dynamics have not only to ac-
count for growth and interactions but also for spatial processes like random or directed
and joint or relative motion of species as well as the variability of the environment.

The interplay of phytoplankton and zooplankton growth, interactions and transport
yields the whole spectrum of spatio-temporal population structures, in particular the phe-
nomenon of plankton patchiness (cf. FAsHaM 1978, OxkuBo 1980). As mentioned before,
the mathematical modeling requires the use of reaction-diffusion and perhaps advection
equations.

Since the classic paper by TURING (1952) on the role of nonequilibrium reaction-
diffusion patterns in biomorphogenesis, dissipative mechanisms of spontaneous spatial
and spatiotemporal pattern formation in a homogeneous environment are of continuous
interest in theoretical biology and ecology. TURING showed that the nonlinear interac-
tion of at least two agents with considerably different diffusion coefficients can give
rise to spatial structure. SEGEL and JACKSON (1972) were the first to apply TURING’S
idea to a problem in population dynamics: the dissipative instability in the prey-preda-
tor interaction of phytoplankton and herbivorous copepods with higher herbivore motil-
ity. LEVIN and SEGEL (1976) suggested this scenario of spatial pattern formation for a
possible origin of planktonic patchiness. Local bistability, predator-prey limit-cycle os-
cillations, plankton front propagation and the generation and drift of planktonic Turing
patches were found in a minimal phytoplankton-zooplankton interaction model (MAL-
cHOW 1993, 1994) that was originally formulated by SCHEFFER (1991a), accounting for
the effects of nutrients and planktivoros fish on alternative local equilibria of the plank-
ton community.

KIERSTEAD and SLOBODKIN (1953) and SKELLAM (1951) were perhaps the first to
think of the critical size problem for plankton patches, presenting their nowadays called
KISS model with the coupling of exponential growth and diffusion of a single popula-
tion. However, as explained in the introduction, these patches are unstable because this
coupling leads to an explosive spatial spread of the initial patch of species with surpris-
ingly the same diffusive front speed as the asymptotic speed of a logistically growing
population.

Spatial and spatiotemporal patterns like regular and irregular oscillations, propagat-
ing fronts, target patterns and spiral waves, pulses as well as stationary spatial patterns
were first known from oscillating chemical reactions (cf. FIELD and BURGER 1985), but
have never been observed in natural plankton populations. Spirals often appear as solu-
tions of reaction-diffusion models of active media, i.e., also in models of plankton dy-
namics (MAaLcHOwW 2000a). In order to blur these artificial structures, environmental
gradients (MALCHOW et al. 2000) and/or noise have been added, resulting in a more re-
alistic patchy structure (MALCHOW et al. 2002, 2003). However, physically generated
spirals have been seen in the ocean as rotary motions of plankton patches on a kilometer
scale (Wyart 1973). Furthermore, they have been found important in parasitoid-host sys-
tems (BOERLDST et al. 1993). For other motile microorganisms, travelling waves like
targets or spirals have been found in the cellular slime mold Dictyostelium discoideum
(GEriscH 1968, 1971, SEGEL and STOECKLY 1972, NEWELL 1983, SEGEL 1977, ALT
and HOFFMANN 1990, IvaNITSKY et al. 1994, KELLER and SEGEL 1970, SIEGERT and
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WEDER 1991, STEINBOCK et al. 1991, VAsIEv et al. 1994, HOFER et al. 1995). These
amoebae are chemotactic species, i. e., they move actively up the gradient of a chemical
attractant and aggregate. Chemotaxis is a kind of density-dependent cross-diffusion
(KELLER and SEGEL 1971a,b), and it is an interesting open question whether there is
preytaxis in plankton or not. However, there is some evidence of chemotaxis in certain
phytoplankton species (IKEGAMI et al. 1995). Recently, a zooplankton generated noise
based taxis of fish has been reported (FREUND et al. 2002). Bacteria, such as Escheri-
chia coli or Bacillus subtilis, also show a number of complex colony growth patterns
(SHAPIRO and Hsu 1989, SHAPIRO and TRUBATCH 1991), different to the already men-
tioned diffusion-limited aggregation patterns. Their emergence requires as well coopera-
tivity and active motion of the species which has also been modeled as density-depen-
dent diffusion and predation (KAWASAKI et al. 1995 a, b).

An important point is that the spatial dimensions of the plankton community func-
tioning provide also new routes to chaotic dynamics. The emergence of diffusion-in-
duced spatio-temporal chaos has been found along a linear nutrient gradient (PASCUAL
1993). Chaotic oscillations behind propagating diffusive fronts are found in a prey-pred-
ator model (SHERRATT et al. 1995, 1997); a similar phenomenon is observed in a math-
ematically similar model of a chemical reactor (MERKIN et al. 1996, DAVIDSON 1998).
Recently it has been shown that the appearance of chaotic spatiotemporal oscillations
in a prey-predator system is a somewhat more general phenomenon and must not be
attributed to front propagation or to an inhomogeneity of environmental parameters
(PETROVSKII and MALCHOW 1999, 2001).

Conditions for the emergence of three-dimensional spatial and spatiotemporal pat-
terns after differential-flow-induced instabilities (EvANS 1977, RoVINSKY and MENZIN-
GER 1992) of spatially uniform populations were derived (MALCHOW 1995, 1996, 1998)
and illustrated by patterns in SCHEFFER’S model. Instabilities of the spatially uniform
distribution can appear if phytoplankton and zooplankton move with different velocities
but regardless of which one is faster. This mechanism of generating patchy patterns is
more general than the Turing mechanism which depends on strong conditions on the
diffusion coefficients; therefore, one can expect a wide range of its applications in popu-
lation dynamics (KLAUSMEIER 1999, MaLcHOW 2000 a, b).

Thus, the dynamics of the plankton communities, particularly processes of pattern
formation, have been under intensive investigation during the few last decades. As a re-
sult, considerable progress in understanding principal features of plankton systems func-
tioning has been achieved. Still, many mechanisms of the spatiotemporal variability of
natural plankton populations are not known yet. Pronounced physical patterns like ther-
moclines, upwelling, fronts and eddies often set the frame for the biological processes.
However, under conditions of relative physical uniformity, the temporal and spatiotem-
poral variability can be a consequence of the coupled nonlinear biological and chemical
dynamics (LEVIN and SEGEL 1976, STEELE and HENDERSON 1992 a, b). SOMMER (1994,
1996) has emphasized the importance of biological dynamics during phytoplankton
blooms. DALy and SMITH (1993) concluded: ... that biological processes may be more
important at smaller scales where behaviour such as vertical migration and predation
may control the plankton production, whereas physical processes may be more impor-
tant at larger scales in structuring biological communities ...” O’BRIEN and WROBLEWSKI
(1973) introduced a dimensionless parameter, containing the characteristic water speed
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Fig. 2 Phytoplankton patterns in Scheffer’s model with two stationary nutrient patches.
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and the maximum specific biological growth rate, to distinguish parameter regions of
biological and physical dominance (cf. also WROBLEWSKI et al. 1975, WROBLEWSKI
and O’BRIEN 1976).

Physical and biological processes may differ significantly not only on spatial but also
on temporal scales. Particularly, the effect of external hydrodynamical forcing on the
appearance and stability of nonequilibrium spatiotemporal patterns has been studied
(MALcHOW and SHIGESADA 1994), making use of the separation of the different time
scales of biological and physical processes. A channel under tidal forcing served as a
hydrodynamical model system with a relatively high detention time of matter. Examples
were provided on different time scales: The simple physical transport and deformation of
a spatially nonuniform initial plankton distribution as well as the biologically determined
formation of a localized spatial maximum of phytoplankton biomass.

Plankton pattern formation is essentially dependent on the interference of various
physical (light, temperature, hydrodynamics) and biological (nutrient supply, predation)
factors (cf. PLATT 1972, DENMAN 1976, FAsHAM 1978). In nature, it has been observed
that the direction of motion of plankton patches does not always coincide with the direc-
tion of the water flow (WyAarT 1971, 1973), and as the spatial scale becomes larger than
approximately 100 meters, phytoplankton behaves successively less like a simple passive
quantity distributed by turbulence (NAKATA and ISHIKAWA 1975, POWELL et al. 1975,
PoweLL and OkUBO 1994). Similarly, the spatial variability of zooplankton abundance
differs essentially from the environmental variability on scales less than a few dozens
of kilometers (WEBER et al. 1986). This indicates that biological factors play an essen-
tial role in the emergence of plankton patchiness (STEELE and HENDERSON 1992 a, b).

For illustration, the formation and spread of a spatiotemporal structure in the Schef-
fer model is demonstrated in Figure 2. The upper and lower boundaries are reflecting
whereas the left and right boundaries are periodic. The existence of two stationary nu-
trient patches is assumed. The system dynamics is in the parameter interval of prey-
predator oscillations. Therefore, the nutrient peaks act as local perturbations and,
hence, as sources of concentric populations waves which break up through local inter-
ferences and boundary effects. Finally, the whole space is filled with a dynamic patchy
structure.

3. Conclusion

This paper was an attempt to give an introduction to and an overview of the mathemati-
cal modeling of biologically controlled spatiotemporal pattern formation in nonequilib-
rium plankton dynamics with a certain focus on prey-predator interactions of diffusive
phytoplankton and zooplankton. Such a summary cannot be complete. Only partial dif-
ferential equation-based models have been introduced, using the Scheffer model (SCHEF-
FER 1991 a) with diffusion as an example. Though these models already exhibit a wide
spectrum of structures, also other modeling tools, such as integro-differential and differ-
ence equations, metapopulation models, cellular automata and further rule-based tools or
complex adaptive systems or combinations of different methods, show promising results
as well and need further attention and development.
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Molecular Mechanisms of Circadian Clocks in
Microalgae
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Abstract

The occurrence of temporal patterns in biology can either be found during development or within rhythmic
processes, whose period can vary from seconds to years. Biological rhythms that have a period of about
24 hours under constant conditions (light, temperature) are called circadian (circa = about; dies = day). In
microalgae, a variety of processes, such as phototaxis, chemotaxis, cell aggregation, cell division or biolumi-
nescence, are controlled by an endogenous circadian clock. The molecular mechanism by which this clock
regulates temporal gene expression has been studied primarily in two of the microalgae, namely the dinoflag-
ellate Gonyaulax polyedra and the green alga Chlamydomonas reinhardtii. Although both algae are phylo-
genetically widely apart they share a certain type of circadian controlled RNA binding proteins that recog-
nize specifically uridine-guanine-repeat elements of a length of at least seven repeats in row. In both algae
this cis-acting element can be found in the 3'-untranslated region of certain mRNAs, which encode different
proteins. In G. polyedra, the mRNA for the luciferin-binding protein, a component of the bioluminescent
system, contains such a motif while in C. reinhardtii several mRNAs, which encode proteins for nitrogen
and CO, metabolism, bear this motif.

Zusammenfassung

Temporale Erscheinungen in biologischen Systemen sind sowohl wihrend der Entwicklung eines Organis-
mus als auch bei rhythmischen Prozessen, deren Periode von Sekunden bis hin zu Jahren variieren kann, zu
finden. Biologische Rhythmen, welche eine Periode von ca. 24 Stunden unter konstanten Bedingungen
(Licht, Temperatur) haben, nennt man circadian (circa = ungefihr, about; dies = Tag, day). In Mikroalgen
werden zahlreiche Prozesse, wie z. B. Phototaxis, Chemotaxis, Zellaggregation oder Biolumineszenz, von
einer endogenen circadianen Uhr kontrolliert. Der molekulare Mechanismus, mit dem diese Uhr temporale
Genexpression reguliert, wurde hauptséchlich in zwei der untersuchten Mikroalgen, ndmlich dem Dinofla-
gellaten Gonyaulax polyedra und der Griinalge Chlamydomonas reinhardtii, iiberpriift. Obwohl beide Algen
phylogenetisch sehr weit auseinander liegen, gibt es in beiden ein circadian kontrolliertes RNA-Bindepro-
tein, das spezifisch Uridin-Guanin-Repetitionen mit einer Mindestlinge von sieben Wiederholungen er-
kennt. In beiden Algen befindet sich das Bindemotiv in der 3'-nicht-translatierten Region bestimmter
mRNAs, die unterschiedliche Proteine kodieren. In G. polyedra enthilt die mRNA des Luziferin-Bindepro-
teins, welches eine Komponente des biolumineszenten Systems darstellt, solch ein Motiv, wihrend es in
C. reinhardtii in mRNAs vorkommt, die fiir Proteine des Stickstoff- und CO,-Metabolismus kodieren.

1. Introduction

Spatiotemporal patterns are very widespread in biology. They comprise the formation of
structures, which can permanently reorganize themselves. For example, chemotactic
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movements of cells and growing tips of neurons always develop new growing areas on
surface by removing consequently other parts (MEINHARDT 2001). Thus, the cells are
able to move to a certain direction. Spatiotemporal processes represent also the basis
for the developmental program of an organism. During the development from an embry-
onal stage to an adult organism cells become polarized and divide in a programmed man-
ner during a fixed time range. Beside development, temporal programs can also occur in
rhythmic patterns during the lifespan of an organism. Hereby, their period can vary from
seconds (ultradian), 24 h (circadian), one year (annual) to years (infradian rhythms).

Spatiotemporal organization can be studied in different ways. On one side, one can
analyze the molecular basis for such regulation and look for the genes/mRNAs that are
switched on or translated during a specific time window or within a given area of a cell
or a tissue. Such experiments will usually result in the identification of a network of
genes/proteins that interact with each other. In the case of rhythmic processes such pro-
teins have been often shown to be part of a feedback loop with positive and negative
elements (summarized in HARMER et al. 2001). On the other side, oscillations, which
occur in spatiotemporal pattern formation, can be modeled based on mathematical calcu-
lations and their non-linear dynamics can be studied at the level of theoretical physics.
Thereby, the already available information about the proteins, which are involved in
creating such oscillations, can serve as basis.

This review will first introduce the physiological characteristics of circadian clocks
and will then focus on the molecular biology based approach for the investigation of
rhythmic patterns within the microalgae. It will describe so far characterized proteins
of circadian output processes and their regulation. In future, these proteins can serve as
a platform for modeling studies as mentioned above.

The daily change of light and darkness governs the environment on earth and some
prokaryotes, and most likely all eukaryotes have adapted a variety of biological pro-
cesses, which exhibit a period of 24 hours, according to this oscillation. In many cases
these processes are regulated by an internal biological clock, called circadian clock. This
timekeeper tells the organism at what time of the day it has to transcribe certain genes or
start the translation of their mRNAs.

The circadian clock has certain physiological features, which are well conserved from
cyanobacteria up to humans (ASCHOFF 1981, KoNDoO et al. 1993). The most important is
the fact that the rhythm continues with a period of about 24 h when the organism is put
from a light-dark cycle to constant conditions of light (dim-light or darkness) and tempera-
ture. Hence, the name circadian deriving from the latin (circa = about; dies = day) was
defined. As desirable for a well functioning clock, circadian rhythms are temperature com-
pensated. In contrast to biochemical reactions, which have an accelerated rate with an in-
crease of temperature of 10 °C (Q;q) by a factor of 2, their Q( ranges from 0,8 to 1,3.
Another important feature is their ability for entrainment. When an organism is put from
a light-dark regime into a reverse cycle (dark-light) it will adapt to this new cycle within a
few days. In addition, light pulses can influence the phase of the rhythm, a phenomenon
called phase shifting. Depending on the time of the circadian cycle when the light pulse is
given the phase can be either advanced or delayed. Even in multicellular organisms, in-
cluding animals, the generation of circadian rhythms is a property of single cells (WELSH
et al. 1995). Thus, unicellular organisms such as microalgae are perfectly suited to study
the basics of the circadian clock and its molecular mechanism.
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This review will focus on two microalgae that have been extensively used to study circa-
dian rhythms in eukaryotic microalgae, namely the dinoflagellate Gonyaulax polyedra
and the green alga Chlamydomonas reinhardtii.

2. Gonyaulax polyedra and its Relevance in Chronobiology

The marine unicellular alga Gonyaulax polyedra belongs to the dinoflagellates, which
are unique in several respects (LEE et al. 1993). Some of them are able to exhibit biolu-
minescence naturally (SCHMITTER et al. 1976). The bioluminescence rhythm of G. poly-
edra was indeed one of the first rhythms, which was well studied by chronobiologists
(HASTINGS and SWEENEY 1958). But in this alga, other circadian rhythms such as cell
aggregation, photosynthesis and cell division can also be observed (summarized in ROEN-
NEBERG and MITTAG 1996). While bioluminescence reaches its maximum during the
night-phase, photosynthesis and cell aggregation peaks during the day-phase, and cell
division occurs just at dawn. Due to the fact, that bioluminescence is easily measurable
and suited for automatic monitoring (ROENNEBERG and HASTINGS 1992), this rhythm has
provided the basis for studying the circadian system at the physiological level (ROENNE-
BERG 1996). Cultures of G. polyedra were exposed to different light qualities or drugs
and nutrients were added to them. Consequently, the effect on the period and phase of
the bioluminescence rhythm was examined. From these studies, conclusions could be
drawn on the light input pathway, which provides information for the central pace-
maker, the oscillator. Some of them will be shortly presented here, a more complete
overview can be found in ROENNEBERG (1996) and MITTAG (2001). There are at least
two light-input pathways in the G. polyedra system, one being blue sensitive and an-
other, which is red and blue sensitive (ROENNEBERG and HASTINGs 1991). By drug ap-
plication, it was found, that inhibitors of kinases and phosphatases are strongly affecting
the period and phase of the bioluminescence rhythm (CoMoLLI et al. 1994, 1996, ComOL-
LI and HASTINGS 1999). Thus, it seems likely that phosphorylation and dephosphoryla-
tion plays a significant role in the circadian system of this alga. Nutrient studies revealed
that nitrate acts as a nonphotic Zeitgeber signal. It influences all canonical properties of
circadian rhythms: amplitude, phase and period (ROENNEBERG and REHMAN 1996). Be-
side these physiological examinations, circadian bioluminescence was also studied at the
cellular, biochemical and molecular biology level.

2.1 Cell Biology and Biochemistry of Circadian Bioluminescence

The bioluminescent system of G. polyedra is entirely controlled by the circadian clock.
All the components of this system are localized in small organelles named scintillons.
They represent extensions in the form of bubbles, which reach from the cytoplasm into
the celluar vacuole and are surrounded by the vacuolar membrane (FOGEL et al. 1972,
NicoLas et al. 1987). They are, however, still connected by a narrow strip with the cyto-
plasm. Their number fluctuates during the day-night cycle changing from about 40 dur-
ing the day-phase to ca. 400 during the night-phase. These organelles can be visualized
by the fluorescence of the substrate luciferin (FriTZ et al. 1991). At pH 7.5, the substrate
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is bound to a so called luciferin-binding protein (LBP), which prevents its oxidation. In
addition, the enzyme luciferase (LCF) catalyzing the bioluminescence reaction, is inac-
tive at this pH. Due to a drop of pH to 6,5, LBP undergoes some conformational change
and releases the substrate (MORSE et al. 1989 b, MoORSE and MitTAG 2000). Since the
enzyme LCF is activated at this pH, the bioluminescence reaction can take place. Luci-
ferin is oxidized by molecular oxygen, which leads to an electronically excited state. Its
decay results in the emission of visible light. It is hypothesized that an action potential
across the vacuolar membrane is caused by mechanical stimulation resulting in an influx
of protons into the scintillons, which reduces the pH in these organelles.

All three, the substrate luciferin, LBP and LCF are present at high amounts during the
night phase and at a low rate during the day-phase (JOHNSON et al. 1984, MORSE et al.
1989 a). Each day, they are synthesized and destroyed again, a process, which is in ac-
cordance with the formation and destruction of the scintillons.

2.2 The Molecular Mechanism of Circadian Bioluminescence

In many cases of circadian output regulation, it was found that the amount of mRNA
cycles during the light-dark regime. Typical examples are the genes for chlorophyll a/b-
binding proteins (cab) (PIECHULLA 1999) or the so-called clock-controlled genes in the
fungi Neurospora crassa (BELL-PEDERSEN et al. 1996). In all these cases, circadian gene
expression is controlled at the level of transcription. When circadian regulation of LBP
and later on LCF were studied, it was surprising that the level of both mRNAs was con-
stantly at a high rate during the entire day-night cycle indicating that both genes are
controlled at the level of translation (MORSE et al. 1989a, MITTAG et al. 1998). Indeed,
it appears that translational control is very widespread in this alga (MILos et al. 1990,
MARrcovic et al. 1996, FAGAN et al. 1999).

Since the [bp gene was available first, most progress of understanding its circadian
control has been made in this case. With pulse-chase experiments, it was shown that
synthesis of LBP fluctuates; it is maximally synthesized at the beginning of the night-
phase resulting in high level of LBP in the middle of the subjective night (MORSE et al.
1989 a). At the end of the night, it is degraded by a still unknown mechanism. Since its
mRNA is present throughout the day-night cycle it could be clearly concluded that its
circadian regulation occurs at the translational level. It was indeed the first example of
such a regulation within the circadian system.

Translational regulation can be mediated by the untranslated regions (UTRs) of an
mRNA. In several cases, cis-acting elements situated either in the 5'- or 3'-UTR are
known to be recognized by trans-acting factors, which can play a role as activators or
repressors of translation (DECKER and PARKER 1995, PAIN 1996). In addition, so-called
upstream open reading frames (WORFs) situated in the 5'-UTR can influence translation
(Kozak 1991).

In case of Ibp mRNA such a uORF was found in its 5'-UTR. Characterization of this
uOREF by in-vitro translation experiments of /bp mRNA (wildtype and mutagenized var-
iants) showed that two LBP proteins are made, which differ in their N-terminus (MITTAG
et al. 1997). LBP-A comprises its entire ORF while LBP-B is initiated from a later start
codon in the /bp ORF. Mutation of the uORF results in the loss of this differential initia-
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tion event so that only LBP-A is expressed. In-vivo data including Western blot analysis
revealed that these two forms are also present in Gonyaulax. Due to their similar molec-
ular masses it remains unclear if both forms are up regulated during the night-phase,
although it appears that this might be only the case with LBP-A (MITTAG et al. 1997).
Also, the function of LBP-B is not solved up to now.

How is the translational control of LBP-A achieved? By mobility shift assays trans-
acting factors, which might interact with /bp 5'- or 3’-UTR, were searched. While no
RNA-binding proteins were found that interact specifically with the /bp 5-UTR, an
RNA-binding protein could be identified that recognizes a 22-nt long region within the
Ibp 3'-UTR (MITTAG et al. 1994). This protein was called CCTR (circadian controlled
translational regulator) since its binding activity changes over the day-night cycle. It in-
creases at the end of the night and decreases again at its beginning. When G. polyedra
cells were put under constant conditions of dim light, this rhythm of binding activity
continued demonstrating that the CCTR is controlled by the circadian clock (MITTAG et
al. 1994, MitTaG 2001). Its binding site comprises seven UG-repeat elements with a
UUG at position five. Prediction of RNA secondary structure by computer simulation
(ABRAHAMS et al. 1990) showed that the UG-repeat is situated within a potential hair-
pin-loop structure. Since the binding activity of the CCTR correlates negatively with
the synthesis of LBP it was hypothesized that this protein acts as repressor of translation
preventing that LBP (at least LBP-A) is translated during the day-phase.

3. Chlamydomonas reinhardtii, an Eucaryotic Model Organism

During the past years, the green alga Chlamydomonas reinhardtii has emerged as a mod-
el organism for studying specific processes such as flagella and basal bodies, photo-
synthesis, metabolic pathways and circadian rhythms (HARriS 2001). This alga, also
named ‘“green yeast” provides numerous molecular tools that facilitate the examination
of the processes mentioned above. Similar to yeast, C. reinhardtii can be grown in its
haploid form, which allows to screen easily for mutants by their phenotype. Under cer-
tain environmental conditions, gametes can be produced, which form a zygote; following
meiosis, tetrade analysis can be carried out. The alga can be grown quickly to high
amounts, either photoautotrophic or heterotrophic (on acetate), both in liquid as well as
on solid culture medium. Its nucleus, chloroplast and mitochondria can be stable trans-
formed and several new technologies such as a green fluorescent-protein (GFP) reporter
gene or the use of RNAi have been succesfully applied (FUHRMANN et al. 1999, 2001).
In addition, international genome projects are on their way: the entire chloroplast gen-
ome has been sequenced, and currently there are more than 180000 expressed se-
quenced tags (ESTs) available. Also, sequencing of the nuclear genome of this alga is
meanwhile completed (http://www.biology.duke.edu/chlamy_genome/crc.html).

3.1 Circadian Rhythms in C. reinhardtii

Since several of the above mentioned advantages of C. reinhardtii are known for a long
time, investigators have also used this alga for studying circadian rhythms. One of the
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first rhythms, described in this alga was phototaxis, which reaches its maximum during
the day-phase (BRUCE 1970). The algae swim toward a supplied light source preferen-
tially during the day. The environmental advantage of such a behavior seems obvious:
the algae are able to capture more light for photosynthesis. This rhythm was even stud-
ied in a spacecraft in outer space, where it was robustly expressed (MERGENHAGEN and
MERGENHAGEN 1987). Based on circadian phototaxis, several clock mutants having an
altered period were also described (BRUCE 1972, BRUCE and BRUCE 1978).

There are, however, also circadian rhythms in C. reinhardtii that peak during the
night-phase including cell stickiness (STRALEY and BRUCE 1979), chemotaxis (BYRNE
et al. 1992), and cell division (Goto and JOHNSON 1995). Another circadian rhythm,
namely sensitivity to UV radiation, has its maximum at the day-night switch (NIKAIDO
and JoHNsoON 2000). Cell stickiness reflects the ability of the cells to stick to a glass
surface, which is due to alterations on the cell surface (STRALEY and BRUCE 1979). The
rhythm of chemotaxis was studied by using the chemo-attractant ammonium as nitrogen
source. Of note is the fact, that the cells swim maximally towards this nitrogen source
during the middle of the night-phase even though the uptake of ammonium (in form of
radiolabeled methylammonium), which is also circadian, does not occur until dawn. This
is in accordance with the uptake of nitrite, which also occurs maximally at the beginning
of the day and with the activity of nitrite reductase (PAJUELO et al. 1995).

3.2 Transcriptional Control of Gene Expression

The strong focus on photosynthesis in C. reinhardtii, which is due to the fact that photo-
synthetic mutants are fertile and can be grown heterotrophically on acetate, has led sev-
eral investigators to study the expression of genes encoding photosynthetic or related
proteins. In this context, several genes were identified whose mRNA levels change dur-
ing the day-night cycle indicating transcriptional control of circadian gene expression
(summarized in MittaG 2001). In some cases, nuclear run-on experiments were carried
out in addition and clearly confirmed this indication.

As in higher plants (PIECHULLA 1999), the expression of nuclear genes encoding the
chlorophyll a/b-binding protein of photosystem II (cab II, also named lhcp II: light har-
vesting complex protein), which absorbs and transfers light to the reaction center of
PS 11, is subject to circadian regulation (JACOBSHAGEN and JOHNSON 1994, JACOBSHAGEN
1996). Further transcriptionally controlled genes comprise LI§/8, which encodes a pro-
tein that has 30 % homology to CAB (SAVARD et al. 1996) and cahl (carbonic anhydrase,
Funiwara et al. 1996). All these genes are nuclear encoded and show circadian rhythms
of mRNA abundance with a maximum during the day-phase. However, several (possibly
all) chloroplast encoded genes exhibit as well circadian rhythms of transcription, with
peaks occurring mostly during early day-phase (SALVADOR et al. 1993, HWANG et al.
1996). In addition, it was found that the supercoiling status of chloroplast DNA oscil-
lates in an endogenous manner in this alga (SALVADOR et al. 1998). Thus, a general
ON/OFF switch could be present in the C. reinhardtii chloroplast and nuclear encoded
genes encoding chloroplast proteins might have adapted their temporal expression to
this event.
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3.3 Posttranscriptional/Translational Control of Gene Expression:
Conserved RNA-binding Proteins in G. polyedra and C. reinhardtii

The identification of the RNA-binding protein CCTR in G. polyedra, which is involved
in the circadian LBP expression at the translational level, raised the question if trans-
acting factors that are controlling circadian output, could be conserved in evolution,
even though their targets might be different. To investigate this possibility, clock-con-
trolled RNA-binding proteins that interact specifically with UG-repeat regions were
searched in the green alga C. reinhardtii, which is phylogenetically widely apart from
the dinoflagellates (MELKONIAN et al. 1995). For this purpose, the /bp 3'-UTR contain-
ing the cis-acting element for the CCTR was used as a probe to screen in mobility-shift
assays for proteins from C. reinhardtii, which can interact specifically to this repeat. By
this way, an RNA-binding protein could be identified that fulfills all criteria to be con-
sidered as a CCTR analog: it interacts specifically with the UG-repeat, and its binding
activity is controlled by the circadian clock (MITTAG 1996). However, in contrast to the
CCTR, its binding activity is phase shifted: it increases at the end of the day-phase and
decreases again at the end of the night-phase. If this RNA-binding protein, called CHLA-
MY 1, acts as a translational repressor, it would repress the translation of mRNAs during
most part of the night-phase.

One important question was concerned with the target mRNAs in C. reinhardtii that
are subject to the control of CHLAMY 1. Since EST-projects in this alga are on its way,
several candidates could be identified by computer screening that contain UG-repeat rich
elements in their 3’-UTRs. But in all cases the UG-repeat was not fully identical with the
Ibp sequence containing seven UG-repeats in row, with an UUG at position five. By in-
vitro mutagenesis of UG-elements within the /bp 3'-UTR, it was determined how many
UGs in row are necessary for the binding of either the CCTR or CHLAMY 1 (MITTAG
and WALTENBERGER 1997). These examinations led to the conclusion that strong binding
of both proteins requires the presence of all seven repeats. Nevertheless, it was still
unclear if the lack of the UUG at position five or UG-repeats with more than seven
elements, as it was found in several mRNAs from C. reinhardtii, would allow binding

Tab. 1 Binding activity of the circadian RNA-binding protein CHLAMY 1 to different mRNAs containing
UG-repeat elements in their 3’-UTR

Gene Protein Number of Binding strength of CHLAMY 1
UG-repeats in row (with molar excess for competing
50 % binding)
gs2 Glutamine synthetase2 7 High (1x)
arg7 Arginino-succinate lyase 7 High (1x)
rbeS1 Small subunit of RUBISCO 7 and 2 UUGs High (2x)
niil Nitrite reductase 9 High (3%)
nrt2;3 Nitrite/nitrate transporter 16 High (8%)
lip-36 G1 CO,-shuffling protein Medium (11x)
yptcd G-protein 7 Low (33%)
Ipcr-1 NADPH-protochloro-phyllide 7 Low (36x)
oxidoreductase
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of CHLAMY 1. These questions were answered by analyzing eight mRNAs that
contained UG-repeats from seven up to 16 elements in row in their 3'-UTR by
mobility-shift assays as well as UV-crosslinking experiments (WALTENBERGER et al.
2001). CHLAMY 1 could specifically bind to all examined mRNAs (see Tab. 1). By
competition assays, it was checked further if the binding affinity of CHLAMY 1 would
increase with the number of UG-elements. This was not the case. Since several experi-
ments indicate that the CCTR and CHLAMY 1 require a single stranded nucleic-acid
domain, a loop, for binding (MiTTAG 2001), it could be hypothesized that the number
of UG-elements, which are present within the loop may determine binding strength.

Interestingly, the binding activity of CHLAMY 1 correlated with the function of the
proteins, which are encoded by the examined mRNAs (WALTENBERGER et al. 2001).
Some of them are key components of nitrogen metabolism and are involved in the up-
take of mainly nitrite (NRT2;3), its reduction to ammonium (NII1), the fixation of am-
monium as glutamine (GS2), and in arginine biosynthesis (ARG 7). As mentioned ear-
lier, the uptake of nitrogen components in C. reinhardtii takes place at the beginning of
the day-phase. Since the activities of enzymes/proteins involved in nitrogen metabolism
vary in a temporal way that is opposite in phase to that of CHLAMY 1, it may repress
the translation of the cognate mRNAs.

In addition to these examples, CHLAMY 1 has strong affinity to mRNAs, which en-
code proteins involved in CO, metabolism such as LIP36-Gl, a protein on the outer
chloroplast membrane that shuffles CO, into the chloroplast or RBCSI, the small sub-
unit of RUBISCO (WALTENBERGER et al. 2001).

Thus, CHLAMY 1 seems to coordinate entire metabolic pathways in a circadian way.
Up to now, it remains open if this protein is purely a component of the transduction path-
way from the central oscillator to the circadian output, or if it is also a part of the pace-
maker itself.

4. Conclusive Remarks

In the two microalgae G. polyedra and C. reinhardtii several metabolic processes are
regulated by the circadian clock. Some of them are regulated by a conserved clock-con-
trolled RNA-binding protein (CCTR and CHLAMY 1, respectively). Up to now, it re-
mains open if such circadian output processes are entirely controlled by one central os-
cillator within these single cell organisms or if oscillations within the metabolic network
are more complex structured. In case of G. polyedra it was already shown that there are
two oscillators within a single cell, one of them triggering the bioluminescence rhythm
and the other one being involved in the rhythm of cell aggregation (ROENNEBERG and
MOoRSE 1993). In C. reinhardtii this possibility remains an open question. The fact that
circadian clocks were also found in cyanobacteria (KOoNDO et al. 1993) would support a
hypothesis that one oscillator was given to the eukaryotic cell by its endosymbiont and
may have been retained in the organelle (MITTAG 2001). If this would be the case, the
regulation of the RNA-binding protein CHLAMY 1, which binds to several mRNAs
whose proteins are transferred into the chloroplast after translation, could be very com-
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plex. One could imagine that in this case both potential oscillators would contribute to
this regulation about feedback regulation.

In general, molecular components of the clock machinery could totally differ be-
tween two oscillators or they could be shared among them. Such complex organization
programs would consist of many variables and would be hard to analyze in their com-
plexity at the molecular level. In this context, it can be of advantage to generate numer-
ical simulations and create mathematical models, which can help understanding such
complex systems. The build up of such modeling opens then the possibility to develop
further strategies, which will allow a more precise access to studies at the molecular
level. In case of the above described circadian RNA-binding proteins such modeling
has not been undertaken up to now, but it presents a challenge for future investigations.
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De-novo Formation of the Hydra Head Organizer

Ulrich TECHNAUI, Bert HOBMAYERl’z, Fabian RENTZSCH ' , and
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With 6 Figures

Abstract

Signaling centers or organizers play a pivotal role in the formation of body axes in multicellular animals. In
vertebrates, organizers secrete growth factors, which act as short- and long-range morphogens in axis forma-
tion and cell differentiation. We studied the evolutionary origin of organizers and identified the Wnt/Wg*
and TGFf/Bmp signaling pathways in Hydra, a member of the primitive animal phylum Cnidaria. Mole-
cules of the Wnt/Wg pathway and the TGFf/Bmp antagonist Chordin are expressed in the Hydra head
organizer. These molecules act during de-novo formation of the head organizer in aggregates as well. In
suspensions of dissociated single cells, such organizers arise by a community effect and form small clusters
of 5-15 cells that express the conserved HyWnt and HyBral genes. They act as local sources that instruct
and recruit, i.e., activate the surrounding cells and generate a field of lateral inhibition that ranges up to
1000 pm. We propose that the highly conserved patterning systems in higher animals originated from
extremely robust and flexible molecular self-organizing systems using Wnt and TGFf/Bmp signaling in the
earliest multicellular animals.

1 Zoologisches Institut, Technische Universitit Darmstadt, Schnittspahnstrae 10, 64287 Darmstadt, Ger-
many.

2 Zoologisches Institut, Universitét Innsbruck, Technikerstrafie 25, 6020 Innsbruck, Austria.

3 MPI fiir Immunbiologie, Stiilbeweg 51, 79108 Freiburg, Germany.

4 Wnt/Wg: Wnts/Wg proteins comprise a family of cysteine-rich glycoproteins. Name comes from fusing
the name of the Drosophila segment polarity gene wingless (wg) with the name of the first of its vertebrate
homolog genes integrated-1 (int-1), which is activated by the Mouse Mammary Tumour Virus (MMTYV).
TGF-f/Bmp: TGF-f super family includes the transforming growth factor beta family (TGF-f), the Acti-
vin family, the Bone morphogenesis proteins (Bmp), Nodal, and other proteins. In Drosophila, the gene
decapentaplegic (dpp) is homologous to the vertebrate bmp-4 gene. Sog/Chordin: The Drosophila protein
Short gastrulation (Sog) and the homologous vertebrate protein Chordin are cysteine rich extracellular
antagonists of Bmp-4/Dpp proteins. GFP: Green fluorescent protein from Cyanea (Cnidaria). Tld: The
metalloprotease Tolloid (Tld) cleaves Sog/Chordin to free Dpp/Bmps. Bra: Transcription factor Brachyu-
ry (Bra) was named after a mouse mutant exhibiting reduced posterior structures (gr. short tail). Dsh, Frz:
Dishevelled (Dsh) and Frizzled (Frz) are members of the canonical Wt/Wg pathway; they are encoded by
genes, which were named after mutants of Drosophila wing development. GSK3: Glycogen synthase pro-
tein kinase (GSK3) is a member of the canonical wnt/wg pathway phosphorylating f-Catenin. Tct/Let:
The transcription factor Tcf (T cell factor) or Lef (Lymphoid enhancer factor) interacts with f-Catenin
and induces down stream target genes. Smad: The Smad family of transcription factors was named by
combining the names of the first identified members of the family, i.e. the Caenorhabditis Sma protein
and the Drosophila Mad (Mothers against decapentaplegic) protein.
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Zusammenfassung

Signalzentren spielen eine zentrale Rolle in der Achsenbildung multizelluldrer Tiere. Bei Vertebraten wer-
den vom Organisator Wachstumsfaktoren abgegeben, die als kurz- und langreichweitige Morphogene die
Achsenbildung und Zelldifferenzierung steuern. Wir studieren den evolutiondren Ursprung des Organisators
und haben bei Hydra den Wnt/Wg- und TGF-f/Bmp-Signalweg identifiziert; Hydra ist Vertreter des evolu-
tiv urspriinglichen Tierstamms der Cnidaria. Molekiile des Wnt/Wg-Signalweg und der TGF-f/Bmp-Anta-
gonist Chordin werden im Kopforganisator von Hydra exprimiert. Diese Molekiile sind auch in der De-no-
vo-Musterbildung des Kopforganisators aus Aggregaten dissoziierter Zellen aktiv. In solchen Suspensionen
dissoziierter Zellen entstehen Kopforganisatoren durch einen community effect und bilden kleine Cluster aus
5-15 Zellen, die Wnt- und Brachyury-Gene exprimieren. Diese Cluster agieren als lokale Quellen, die Zel-
len der Umgebung instruieren und zugleich ein Feld lateraler Inhibition mit einer Reichweite von bis zu
1000 pm erzeugen konnen. Wir gehen davon aus, dafl das hoch konservierte Musterbildungssystem hoherer
Tiere aus einem extrem robusten und flexiblen molekularen Selbstorganisationssystem entstanden ist, wie es
von den frithesten multizelluldren, tierischen Organismen erfunden wurde.

1. The Hydra Head Organizer

Organizer tissues play a pivotal role during early embryonic development and provide
positional cues for the definition of the main body axes. They represent distinct areas
of an embryo that can instruct and recruit the surrounding tissue to contribute to the for-
mation of a particular structure. The best-studied example of such an organizer tissue is
the dorsal lip of the frog embryo, which can induce a secondary body axis when grafted
to the ventral side of the embryo (SPEMANN and MANGOLD 1924). The discovery that the
same set of genes is active in the organizer of all vertebrates further suggested that basic
features of the organizer might be conserved (for review see HARLAND and GERHART
1997). However, it was unclear when and how the organizer and its molecular composi-
tion did arise during animal evolution (KNOLL and CAROLL 1999).

Organizers are not restricted to vertebrates. In the freshwater polyp Hydra, Ethel
BROWNE (1909) showed in the laboratory of Thomas MORGAN that a small piece of tissue
from the hypostome, the most apical tip of the animal, is able to induce a secondary body
axis, when grafted laterally to another polyp (Fig. 1). The hypostome of a Hydra is therefore
the equivalent of the Spemann organizer in amphibians (see also BROUN and BoDE 2002).

Hydra is a member of the diploblastic Cnidarians, which belong to the simplest living
metazoans. Cnidarians evolved about 700 million years ago and represent the first ani-
mals with defined body axis and a nervous system. The fact that Hydra’s head tissue
exhibits a strong axis inducing capacity suggests that organizers are a basic feature of
all metazoans, which evolved very early during metazoan evolution. Since Hydra’s
body plan can also be completely re-established from dissociated and re-aggregated sin-
gle cells, organizers can be set up de novo, i.e. by self-organization in a tissue without
inherent asymmetry or external cues.

2. Molecules of the Head Organizer
Several transcription factors, e.g., the fork head homolog budhead (MARTINEZ et al.
1997), the homeobox gene goosecoid (BROUN et al. 2000), and the T-box gene brachy-

ury (TECHNAU and BODE 1999), that play a role in the organizer of vertebrates, have
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Fig. 1 The Hydra organizer experiment of Ethel BROWNE. Hypostomal tissue of an aposymbiontic strain
of Hydra viridissima was transplanted to the body column of a green Hydra (Hydra viridissima). The small
piece of grafted tissue (white) induced the formation tentacles and an intact body axis in the host (green).
From BROWNE (1909).

been isolated from Hydra, and all of them are also expressed in the organizer region in
Hydra (for review see GALLIOT 2000). This indicated that also the two major signaling
systems of the vertebrate organizer that act as diffusible morphogens, i.e. the Wnt and
the BMP4/7 pathway (for review see DEROBERTIS and SAsar 1996, DEROBERTIS and
BouwMEESTER 2001), might be present in the Hydra head organizer.

The key components of the Wnt-signaling pathway, i.e. the Wnt ligand (HyWn), its
cytoplasmic mediators Dishevelled (HyDsh), GSK3 (HyGSK3), and f-Catenin (Hyf3-Cat)
together with its transcriptional co-activator Tcf (HyTcf), were cloned by HOBMAYER et
al. (2000). A Hydra member of the family of Frizzled receptors was published by
MINOBE et al. (2000).

In-situ hybridization revealed that Wnt signaling acts in the head organizer of Hydra.
HyWnt is expressed in a small number of about 50 epithelial cells at the apical tip of the
hypostome which might represent the Hydra head organizer. HyTcf expression is also
restricted to the hypostome of the polyp, but the HyTcf expression domain is broader
than the HyWhnt spot comprising the entire hypostome, and thereby possibly demarcates
the range of action of the HyWnt ligand (HOBMAYER et al. 2000). In the budding zone,
where the new body axis of the daughter polyp is initiated (OTT0 and CAMPBELL 1977),
activation of the HyWnt pathway starts with an up-regulation of Hyf-Cat and HyTcf, and
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is followed by HyWhnt expression in a spot of 10-15 cells (Fig. 2). Thus, the members of
the Wnt-pathway play a pivotal role in setting up the Hydra head organizer during nor-
mal development.

The second major signaling system involved in early embryonic axis formation of
vertebrates, i.e. the TGFf/Bmp-signaling pathway and its antagonist Chordin (Chd), is
also present in cnidarians (SAMUEL et al. 2001, LELONG et al. 2001, HOBMAYER et al.
2001). In Hydra, a Bmp ligand (REINHARDT and BODE, personal communication), a
highly conserved receptor-regulated Smadl homologue (HOBMAYER et al. 2001), and
the Bmp antagonist Chordin (our unpublished results) were found. In-situ hybridizations
of HySmadl and Chordin mRNA are consistent with the hypothesis that Bmp signaling
is suppressed by Chordin in Hydra tissues exhibiting a high morphogenetic activity,
which would explain a similar function in higher metazoans (for review see DEROBERTIS
and BOUwMEESTER 2001, SHiLo 2001).

These data demonstrate that a core Wnt-signaling pathway as well as the TGFS/Bmp-
signaling pathway and its antagonist Chordin are present in Hydra. Wnt and TGES signal-
ing clearly existed in the common ancestor of diploblastic cnidarians and the triploblastic
Bilateria and hence most likely were a basic feature of early multicellular animals.

3. A Reaction-Diffusion Model of the Hydra Head Organizer

On the theoretical level, pattern formation and positional signaling in Hydra (WOLPERT et
al. 1972) was explained in terms of a reaction-diffusion model by GIERER and MEINHARDT

HyTef A B . 5

Hywnt D E F

Fig.2 Expression of HyTcf (A—C) and HyWnt (D-F) during bud formation in Hydra. Whole mount in-situ
hybridizations show that the formation of a new bud starts with a broad expression domain of HyTcf (A);
within this domain HyWnht is initially expressed in a group of only 15-50 cells (D) defining the head organ-
izer region at the tips of an evaginating bud. At later stages the HyWnt expression enlarges (E—F), while the
broad HyTcf expression domain becomes restricted to the hypostomal region (B—C). (A—F from HOBMAYER
et al 2000, © Nature Publishing Group, 2000)
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(1972). According to this model, a short range activator and a long range inhibitor form a
feed-back loop which leads to a local activation of the tissue destined to form a head and
a lateral inhibition of further activating centers in the vicinity. It was postulated that both,
activator and inhibitor are produced in the head and transmitted to the body column
(GIERER and MEINHARDT 1972, MEINHARDT 1982, MEINHARDT 1993, MACWILLIAMS

B
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Fig. 3 Head induction by activated cell clusters. (A) A two-headed aggregate (96 h) with a head containing
a 60 pm cluster of aggregated, green-labeled cells from dissociated 12 h regenerating tip tissue. Bar is
200 pm. (B) Efficiency of cell clusters to induce head formation. Head formation frequency of single cells
(30 um) and different cell cluster sizes were scored 80 h after aggregation in carrier tissue derived from the
gastric region (filled symbols); control clusters were derived from corresponding carrier tissue (open sym-
bols). (C) A model of HARRISON (1993) predicts that in a reaction-diffusion system, which consists of an in-
itial mixture of different wavelengths (1), one wavelength exists that will be optimally amplified (growth
rate k,). This wavelength is determined by the ratio of activator and inhibitor. (A—B from Proc. Nat. Acad.
Sci. USA 97, 12127-12131; © PNAS, 2000)
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1982, 1983 a, b). The “head activation gradient” (also termed “source density gradient”;
MEINHARDT 1993) maintains axial differentiation and can be measured as a gradient of
head formation capacity in transplantation experiments (MACWILLIAMS 1983 b).

The head inhibition gradient prevents head formation in the body column and can
also be measured in transplantation experiments (MACWILLIAMS 1983 a). This model
can explain organizer formation during reaggregation. After dissociation into a single
cell suspension and subsequent reaggregation, all existing gradients of the polyp are de-
stroyed and have to be re-established (GIERER et al. 1972, TECHNAU and HOLSTEIN
1992). Aggregates are therefore an ideal experimental model system to study self-organ-
ization. The theoretical model assumes that random fluctuations in the activation level in
the aggregate can lead to an amplification of small local peaks resulting in the definition
of a new head organizer.

4. The Minimal Size of the Hydra Head Organizer

One of the basic questions in the theory of self-organization is, what is the minimal size
of such random fluctuations in order to act as an organizer, or in other terms, what is the
minimal size of an organizer. To address this question, we modified the classical ap-
proach of dissociation and reaggregation by adding clusters of different numbers of
fluorescently labeled cells with an elevated level of head activation to an aggregate.
The labeled cell clusters were produced from regenerating tips, which have a maximum
competence for head induction (MACWILLIAMS, 1983 b). The tips were dissociated into
single cells, aggregated in rotary culture, and the resulting cell clusters were fractionated
by size (TECHNAU et al. 2000). When small, labeled cell clusters consisting of 10-15
cells (60—120 pm in diameter) were added to the carrier cell suspension, about half of
them were found in a developing head (Fig. 3A, B). Since the clusters contained only
0.2—4 % of the cells in an aggregate, the high frequency of labeled cell clusters in devel-
oping heads was not random indicating that they are involved in head induction. Indeed,
the clusters remained confined to the hypostome while the tentacles were formed by host
tissue. This shows that a cluster had instructed and recruited surrounding host tissue to
the formation of a new head, which is the definition of an organizer sensu strictu. Single
cells or very small clusters (30 um in diameter) consisting of one or few epithelial cells
have virtually no elevated capacity of induction, while clusters of about 90 um diameter
containing about 50 epithelial cells show maximum inductive capacity (Fig. 3 B). Thus, a
minimal number of 10-15 cells are necessary and sufficient to act as a head organizer.
These data suggest that a “community effect” (GURDON et al. 1993) between these cells
is essential to create a stable signaling centre.

5. The Activation Range of the Hydra Head Organizer

Besides the minimal organizer size, another crucial parameter in self-organization mod-
els is the activation range. Simulations using the reaction-diffusion model of GIERER and
MEINHARDT (1972) show that only cluster sizes that are similar to or larger than the
activator range will amplify and form stable signaling centers (Fig. 4 A—B). Clusters that
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are smaller than the activator range will not be amplified since they lose activator too
rapidly to the environment by diffusion (Fig. 4 C).

We deduced the range of activation from our aggregation experiments (TECHNAU et
al. 2000). Based on the experiment shown in Figure 3 B one can estimate that the range

v

time

Fig. 4 Computer simulation of head formation in aggregates using the Gierer-Meinhardt model (1972). (A)
Simulation starts from randomly fluctuating conditions and leads to the formation of four stable head organ-
izers (heads). (B) Introduction of a cluster of labeled activated cells (red) with a diameter similar too, or lar-
ger than the activator range will amplify and form stable signaling centers. (C) Clusters that are smaller than
the activator range (red) will be only transiently amplified, since they lose activator too rapidly to the envi-
ronment by diffusion.
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of activation is probably not much larger than the radius of a 90 um cluster. Larger clus-
ter sizes (120 um) had no further advantage in inducing heads. This fact can be explained
by a prediction made by the model (HARRISON 1993). In a reaction diffusion system, the
ratio of activator and inhibitor determines the wavelength (1) of a chemical diffusion
wave. Starting from an initial mixture of different wavelengths (1), only one wavelength
exists that will be optimally amplified (Fig. 3 C). This optimal wavelength corresponds
to the activator range and determines the optimal cluster size in our aggregation experi-
ments. Since 90 um clusters exhibited a maximum of activation (Fig. 3 B), we conclude
that the radius of these clusters corresponds to the activation range of the Hydra head
organizer. Thus, the activation range measures about 45 pm or 2-3 epithelial cell di-
ameters.

The fact that an activation range of about 45 pum is necessary and sufficient to stable
amplify an organizer is consistent with the estimated diffusion range of known morpho-
gens, i.e. Wnt/Wingless in Drosophila (GURDON and BouriLLOT 2001). It also indicates
that diffusible morphogens like Wnt play an instructive role in the activation process,
and we therefore examined the expression pattern of HyWnt in early reaggregates.
HyWnt is first expressed in small spots comprising only a few epithelial cells (Fig. 5)
by 24 h. At this time cells have completely sorted out into ectodermal and endodermal
layers (GIERER et al. 1972, TECHNAU and HOLSTEIN 1992), indicating that HyWhnt activa-
tion requires an intact epithelial tissue. By 96 h, the HyWnt expression domains have
enlarged to their final size in future hypostomes (Fig. 5). The size of early HyWnt spots
is 50-60 pm, which corresponds to the minimal cluster-size that can act as an organizer
(see Fig. 3 B), while late HyWnt domains are similar in size (150-200 pm) to the large
clusters, which can induce a head.

6. An Autocatalytic Feedback Control of the Wnt Pathway in the Hydra Head
Organizer?

An essential element of the reaction-diffusion model is the autocatalytic feed-back loop
during the activation process. Preliminary data allow us to propose a feedback control on
the HyWnt pathway (see also scheme in Fig. 5). First, HyWnt might activate and stabi-
lize its own expression directly via its transcriptional mediators Hyf-Cat and HyTcf.
During reaggregation, Hyf-Cat and HyTcf are expressed uniformly throughout the aggre-
gate and later become restricted to domains where new heads are being formed. Notably,
the expression of HyWnt always preceded the apparent restriction of domains in the in-
itially symmetrical environment of an aggregate, and all HyWnt domains finally form a
head (TecHNAU et al. 2000). Of course, subtle differences in the expression level of
HyTcf and Hyf3-Cat, not detectable by the in-situ hybridization method, might possibly
define the HyWnt spots, which in turn enhance up-regulation of HyTcf and Hyp-Cat in
the surrounding tissue. Alternatively, an ubiquitous, but high level of HyTcf and Hyf-Cat
might provide a competence to the cells to produce HyWnt. The activation of HyWnt,
however, might be a stochastic process, which is initiated in single cells, but only main-
tained if by chance neighboring cells also express HyWnt. Both scenarios are consistent
with the idea of an autocatalytic feedback loop and that HyWnt is a direct target gene of
an active Hyp-Cat/HyTcf complex. In Drosophila, autocatalytic self-activation of Wg

360 Nova Acta Leopoldina NF 88, Nr. 332, S. 353-366



De-novo Formation of the Hydra Head Organizer

(the Drosophila Wntl homologue) and a functional Tcf-binding site in the Wg promoter
have been demonstrated (VAN DE WETERING et al. 1997, LESSING and NUSSE 1998).
We have additional evidence that HyWnt might also be positively coupled with an-
other early head gene, HyBral, a Hydra homologue of the T-box gene Brachyury (TECH-
NAU and BoDE 1999). In aggregates, size and time of appearance of small HyBral-posi-
tive spots are equivalent to the HyWnt expression dynamics. Interestingly, HyBral also
shows synexpression with HyWnt during budding and head regeneration as well as in
adult polyps, although the HyBral-positive domain in the steady state hypostome is
broader than the HyWnt-positive domain (TECHNAU and BODE 1999). A putative Tcf-
binding site has been recently identified in the HyBral promoter (TECHNAU, unpub-
lished data), which supports the idea that Brachyury and Wnt are members of a synex-

HyWnt

l

HyWwnt <—

@ Hyfl-Cat
“ .

‘j ; ‘ HyBral — |

24 hr 48 hr 96 hr

Fig. 5 Expression dynamics of HyTcf, HyWnt, and HyBral during aggregate development. In-situ hybridi-
zation reveals patterning events during head organizer formation. HyWnt and HyBral appear simultaneously
in small spots (24 h), which enlarge during later stages (96 h), and precede formation of morphological head
structures by about 2-3 days. All spots eventually develop into heads. (From Proc. Natl. Acad. Sci. USA 97,
12127-12131, and Nature 407, 186—189; © Nature Publishing Group, 2000; © PNAS, 2000). The scheme
shows the putative positive feedback in Hydra Wnt signaling. Preliminary evidence and comparison with
higher metazoans support the view that direct, autocatalytic self-activation and indirect feedback between
HyWnt and the transcription factor HyBral are involved in establishment and maintenance of HyWnt sig-
naling.
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pression group in Hydra. In mouse embryos and mouse cell lines, Brachyury is a direct
target gene of Wnt3a signaling (L1U et al. 1999, GALCERAN et al. 2001), and Brachyury
itself again activates transcription of Wnt/1 in Xenopus (TADA and SMITH 2000). Direct
experimental proof for such a feedback loop in Hydra would be of particular importance.

7. Long-Range Inhibition from the Head Organizer

The second major component in the reaction-diffusion mechanism is the inhibitor which
is produced by the activation center and transmitted to the surrounding tissue to prevent
the initiation of another activation center (GIERER and MEINHARDT 1972). We estimated
the range of inhibition in a competition experiment by introducing cell clusters of differ-
ent size into an aggregate (TECHNAU et al. 2000) where larger cell clusters (120 pm)
exerted an inhibitory influence on the smaller clusters (60 um) (Fig. 6A-B). By measur-
ing the distance of small clusters from the nearest head the range of inhibition could be
estimated. About 50% of the small clusters were not involved in head formation at a
distance of 600 pm, while essentially all of them were in heads at 1000 pm (Fig. 6C).
This indicates an effective range of inhibition of about 800-900 pm. By comparison,
the range of activation as deduced from the size of cell clusters able to induce head forma-
tion was about 45 pm, which is easily 20 x shorter. These results are in good accord with
previous calculations based on the reaction-diffusion model by GIERER and MEINHARDT
(1972) and on MACWILLIAMS’ proportion-regulating version of the model (MACWILLIAMS
1983 a, b) predicting a 15 fold and >20 fold shorter activation range, respectively.

An important prediction of the Gierer and Meinhardt model is that a rise of inhibition
is tightly linked to the rise of activation, which should result in an equal spacing of the
activation centers in an aggregate, independent of the average head activation level in the
aggregate. We found, however, that aggregates from apical tissue (with a high average
head activation level) not only formed more heads than aggregates derived from basal
tissue (with a low average head activation level), but the spacing of heads formed in
apical tissue was also highly irregular. In case that the rise of lateral inhibition would
be tightly linked to the rise of activation, the spacing between heads should be always
quite regular. Thus, the kinetics of inhibition and activation increase is less tightly
linked than previously postulated (GIERER and MEINHARDT 1972). This feature allows
pattern formation to occur in a broad range of initial conditions (MACWILLIAMS 1991,
TECHNAU et al. 2000), and adds a further level of robustness to the system.

The inhibition gradient ensures the size control over a given morphogenetic field.
This size control seems to be a general feature in many embryos of higher metazoans
that is not well understood. It is also far from clear how inhibition is mediated on the
molecular level in Hydra. Based on preliminary evidence in higher metazoans, there
are two alternative possibilities:

(i) Inhibition could be exerted by molecules, which are also involved in growth control,
e.g. the insulin pathway (BOHNI et al. 1999) or nitric oxide (KuzIN et al. 1996).
Mutations in the insulin pathway have been shown to cause a size reduction of the
imaginal discs in Drosophila, and ectopic NO synthetase (Nos) expression decreases
the size of imaginal discs, while inhibition of Nos can increase the leg size in the
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dorso-ventral and anterior-posterior axes (Kuzin et al. 1996). NO can rapidly diffuse
between the cells, and it could be related to changes in the pattern of rapidly cycling
cells during head regeneration and budding (HOLSTEIN et al. 1991).
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Fig. 6 Effect of head inhibition in aggregates. Aggregates contained competing 120 um and 60 um cell
clusters in a single aggregate. (A) A 120 um cell cluster (red) inhibited the formation of another head from
the 60 um cell cluster (green, arrow); bar is 200 pm. (B) Time course of head induction by the 120 pm cell
cluster (red) and the 60 pm cell cluster (green) when competing in a single aggregate (means + SEM,
P <0.001, n =42-53). (C) Correlation of head formation frequency of 60 um cell clusters with their distance
from the nearest head is shown. The percentage of inhibited cell clusters for a given distance to the next head
was calculated (n = 77). (A—C from Proc. Natl. Acad. Sci. USA 97, 12127-12131; © PNAS, 2000)
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(i) An alternative explanation for the inhibition gradient could be that its formation is
correlated to a more complex interaction of known morphogens with antagonistic
factors. The two systems in which size control and morphogen gradients have been
extensively studied are the Drosophila wing disc and the amphibian blastula animal
cap (LAWRENCE 2001, DAY and LAWRENCE 2000). Here, members of the transform-
ing growth factor beta (TGF-f)/Bmp proteins act as long-range morphogens (100-
300 pm), for which concentration dependent effects have been confirmed (BoURILLOT
et al. 2002, GURDON and BouriLLOT 2001). Changes in production of Dpp, the Dro-
sophila Bmp homolog, can substantially redesign the Drosophila wing, indicating a
long-range action. Recent studies using GFP-Dpp constructs suggest, however, a
more complex mode of gradient formation including endocytotic trafficking and deg-
radation (ENTECHEV et al. 2000). The antagonistic factor to Dpp/BMP2—4 is Sog/
Chordin forming an opposing gradient. In Xenopus embryos the Chordin gradient
can have a range of at least 450 um when over expressed, although its in-vivo range,
which is restricted by the metalloprotease Xolloid, appears to be less far (BLITZ et al.
2000). In Drosophila, it has recently been shown directly that Sog forms a protein
gradient in dorsal cells of the embryo (SRINIVASAN et al. 2002). On the dorsal side,
Tolloid (TId) degradation and a dynamin-dependent retrieval of Sog act as a dorsal
sink for active Sog (SRINIVASAN et al. 2002). This long-range activity of Sog/Chor-
din and the related degradation by Tolloid/Xolloid could be an important component
of the autocatalytic feed back loops involved in the long-range inhibition phenomena
and size control of Hydra.

8. Conclusion and Outlook

The Wnt and TGF-f pathways, as well as members of the T-box gene family play a
crucial role in the patterning of all higher animals. The data reviewed here indicate that
Hydra, a representative of one of the oldest metazoan phyla, uses these genes in a signal-
ing centre for regulating the establishment of its major body axis. This strongly indicates
the antiquity of this patterning system and points towards an origin of signaling centers
in the earliest multicellular animals. These genes have also an important function during
de-novo pattern formation in reaggregates. Aggregates are able to generate complete
structures (whole organisms) starting from a broad range of initial conditions. We there-
fore propose that during early metazoan evolution an extremely robust and flexible self-
organization system involving these molecular interactions was selected for, which be-
came conserved during the evolution of higher animals. It is an attractive hypothesis
that the signaling molecules identified here, and their putative feedback control, repre-
sent a core network of molecular interactions constituting an organizer which might be
conserved throughout metazoan evolution.
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Imaging and Imagining Spatiotemporal Variations
of Photosynthesis on Simple Leaves

Uwe RASCHER (New York)

With 9 Figures

Abstract

Leaves of higher plants are generally considered to act as one physiological unit and photosynthesis is consid-
ered to be homogeneously distributed throughout the leaf. Recently this dogma was put into question due to
dramatic improvements in CCD camera techniques enabling the development of imaging techniques to
quantify photosynthetic efficiency with high resolution using chlorophyll fluorescence. Leaves that were for-
merly considered homogeneous are now seen as having spatiotemporal variations of photosynthesis. One
well investigated example is the crassulacean acid metabolism (CAM) of Kalanchoé daigremontiana, which
is regarded to be a time-dependent adaptation with a distinct day/night pattern of CO, exchange. Its dynam-
ics are expressed as patterns of independently initiated spatial variations in photosynthetic efficiency. Spa-
tiotemporal heterogeneity of photosynthetic efficiency (¢psi)’ governs the subsequent phases of CAM, the
different periods of endogenous, circadian rhythm in continuous light and the arrhythmic gas-exchange pat-
tern of CAM. Non-invasive, highly sensitive chlorophyll fluorescence imaging reveals randomly initiated
patches of varying ¢psy; which are propagated within minutes to hours in wave fronts, forming dynamically
expanding and contracting clusters and dephased regions of ¢pg;;.

Zusammenfassung

Die Blitter hoherer Pflanzen werden im allgemeinen als physiologische Einheiten betrachtet, deren photo-
synthetische Effizienz gleichmiBig tiber die Blattfldche verteilt ist. Dieses Dogma wurde erst in den letzten
Jahren durch die dramatische Entwicklung moderner CCD-Kamerachips in Frage gestellt. Die hochaufgelo-
ste und nichtdestruktive Messung des Fluoreszenzsignals des Chlorophylls ermdglicht es, die Photosynthe-
se-Effizienz rdumlich zu quantifizieren. Hierdurch wurden zahlreiche raum-zeitliche Dynamiken auf
Blittern entdeckt, die bisher als homogen betrachtet wurden. Ein gut untersuchtes Beispiel ist der Crassula-
ceen-Saure-Stoffwechsel (CAM), der eine zeitliche Anpassung der Photosynthese an trockene Standorte dar-
stellt und ein charakteristisches tageszeitliches Muster des CO,-Gaswechsels zeigt. Blitter der CAM-
Pflanze Kalanchoé daigremontiana zeigen dynamisch auftretende Muster unterschiedlicher Photosynthese-
Effizienz auf einem anatomisch homogenen Blatt. Verschiedene raum-zeitliche Musterbildungsprozesse
konnten hierbei wihrend der unterschiedlichen Phasen im Tag- Nachtwechsel, wihrend des endogenen, cir-
cadianen Rhythmus und wihrend des arrhythmischen Gaswechsels beobachtet und beschrieben werden.
Bildgebende Chlorophyll-Fluoreszenz-Messungen zeigen zufillig auftretende Bereiche ungleichformiger
Photosynthese, die sich zu Wellenfronten formieren kdnnen, dynamisch sich ausweitende und zusammenzie-
hende Cluster und eine Phasenentkopplung benachbarter Zellbereiche.

1 ¢PSIIL: relative quantum efficiency of photosystem II; [ ¢PSII: relative quantum efficiency of photo-
system II integrated over one leaf; JCO,: net CO, exchange rate [umol m™2 s~']; PEPCase: phosphoenol-
pyruvate-carboxylase; Rubisco: ribulose-1,5-bisphosphate-carboxylase-oxygenase.
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1. Introduction
1.1 Simple Leaves and Chlorophyll Fluorescence

The understanding of temporal dynamic behavior of biological systems has been in the
focus of biomedical research during the last decades. Theories such as non-linear dy-
namics have revolutionized thinking in physics, biomedical and life sciences research
(MAay 1976, Editorial 2000), and nowadays spatiotemporal considerations are advancing
our understanding of development, rhythmicity and biological regulation (ROSENBLUM et
al. 1996, SCHAFER et al. 1998). Typical examples of spatially extended dynamic systems
are the cAMP waves of Dictyostelium discoideum (MARTIEL and GOLDBETER 1985), pro-
cesses of pattern formation during embryogenesis (GRUNZ 1999, HuDSON 2000, SCHERES
2000), the fibrillation of the vertebrate heart (GRAY et al. 1998), the synchronized activation
of brain nerves (CASTELO-BRANCO et al. 2000), or the phase synchronization of spatially
extended animal populations (Brasius et al. 1999). However, within plant science those
spatiotemporal considerations are rarely found. Plants are not considered to communicate
with each other and the single organs are regarded to function as physiological units.

I will focus on green leaves of higher plants in the following communication. Leaves
are the organs of photosynthetic activity. Their anatomy has been studied intensively
during the last century by various plant anatomists (see e.g. NAPP-ZINN 1973). How-
ever, most studies investigated the vertical stratification of leaves, and only few studies
focused on their horizontal anatomy. Also, plant physiologists seemed to be more inter-
ested in the differences in physiology of the different layers of leaves, than in horizontal
variations such as base/tip gradients. As a result, photosynthetic efficiency was regarded
to be uniformly distributed throughout the leaf.

During the last decade new methods to monitor photosynthesis enabled investigations
with high spatial resolution. One of the most powerful methods is based on the monitor-
ing of the fluorescence signal of chlorophyll @ (SCHREIBER and BILGER 1993, SCHREIBER
et al. 1995), which allows the quantification of relative quantum efficiency of photo-
synthesis in a non-destructive manner on healthy, attached leaves (GENTY et al. 1989).
The fluorescence of chlorophyll a of photosystem II is selectively measured just before
and during a saturating light pulse (duration: 1 s, intensity: at least 2000 pmol m™= s™"),
yielding ground fluorescence (F) and maximum fluorescence (F), respectively. Both
values can be used to calculate the quantum efficiency of photosystem II, which will be
denoted ¢psyy in the following: ¢psy = (F,, — F)/F,, (GENTY et al. 1989). However, the
fluorescence signal is only a fraction of the reflected light. Thus, it is a technical chal-
lenge to be able to monitor this signal with fine spatial resolution. Because of the dra-
matic technical improvements of CCD camera chips during the last decade, quantum
efficiency of photosynthesis can now be imaged in space and time using chlorophyll
fluorescence techniques.

1.2 Spatial Heterogeneity of Photosynthetic Efficiency

Chlorophyll fluorescence imaging techniques were developed in the late 1980s (DALEY et
al. 1989), and were applied to monitor the effects of plant pathogens (BALACHANDRAN et al.
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1994, 1997, LICHTENTHALER et al. 1997), patchy stomatal movements (CARDON et al. 1994,
SiEBKE and WEIS 1995 b) and phloem loading and unloading (SIEBKE and WEIS 1995 a).
Nowadays, chlorophyll fluorescence imaging is a widely accepted method to monitor the
spatial variations of the physiological status of photosynthesis under various conditions
(OsmonD et al. 1999, CHAERLE and VAN DER STRAETEN 2001, OsMOND and PARK 2001).

It is not surprising, that the simplified approach to consider one leaf as a physiologi-
cal unit can no longer be considered sufficient. For example, spatial heterogeneity of
photosynthetic activity is shown to occur in optically non-uniform leaves such as varie-
gated Abutilon striatum leaves (OSMOND et al. 1998) and in uniform leaves during wilt-
ing (OSMOND et al. 1999).

One example in which dynamic, non-anatomy related heterogeneity is visible is that
of the endogenous circadian rhythm of crassulacean acid metabolism (CAM), which will
be discussed in more detail in the following sections.

1.3 The Endogenous CAM-Rhythm

Crassulacean acid metabolism (CAM) is a specific mechanism of inorganic carbon ac-
quisition during photosynthesis and can be divided into four phases (OSMOND 1978). In
phase I nocturnal CO, fixation by phosphoenolpyruvate-carboxylase (PEPCase) leads to
the formation of malic acid that is removed from the site of its formation in the cyto-
plasm by active transport to the central cell vacuole. After a transition phase in the early
light period (phase II), malic acid is remobilized from the vacuole and decarboxylated.
This generates high internal CO, concentrations which lead to closure of stomata in the
leaf epidermis. The released CO, is refixed by ribulose-1,5-bisphosphate-carboxylase-
oxygenase (Rubisco) and assimilated via the Calvin cycle of photosynthesis (phase III).
Finally in the later light period, when malic-acid stores are exhausted, stomata may
open, CO, may be taken up and assimilated directly via Rubisco (phase IV).

In addition to this well known diurnal cycle, the obligatory CAM plant Kalanchoé
daigremontiana shows an endogenous, circadian rhythm of CO, uptake, which may last
for several days, under constant external conditions in continuous light (LUTTGE and
BaLL 1978, LUTTGE and BECK 1992) and in continuous darkness and CO, free air (WAR-
REN and WILKINS 1961). Stable oscillations in continuous light only persist at intermedi-
ate conditions of light intensity and temperature. Above and below thresholds of these
parameters rhythmic behavior changes reversibly to non-stochastic arrhythmic behavior
(GrawMs et al. 1997). The change between rhythmic and arrhythmic domains may occur
in response to very small changes in the control parameters (e. g. within changes of leaf-
temperature of less than 1°C) (LUTTGE and BEck 1992). From a theoretical point of
view the endogenous rhythm can be reproduced by a minimal model that reduces CAM
to three metabolic pools, namely internal CO, concentration, and cytoplasmic and vac-
uolar malic acid levels, respectively, connected by several feedback loops that regulate
malate influx and efflux of the vacuole (BLasius et al. 1997, 1998, 1999, LUTTGE
2000). Model simulations with spatially arranged individual oscillators (BEcCK et al.
2001) and observations on the thermal abolition and restoration of the rhythm (RASCHER
et al. 1998) led to the hypothesis that spatial decoupling of metabolism dynamics in
patches of leaf tissue could underlie the endogenous rhythm.
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2. Dynamic Spatial Heterogeneity of Photosynthesis during the
Endogenous CAM-Rhythm

2.1 Material and Methods

Plants: Plants of Kalanchoé daigremontiana Hamet et Perrier de la Bathie were raised
from adventitious plantlets obtained from leaves of the plant collection of the Botanical
Garden, Darmstadt University of Technology. They were grown in soil culture in a glass-
house until they had produced six to seven pairs of fully developed leaves, and were
about 0.4 — 0.5 m tall. During winter additional light (HQI-T, 400W, Philips) was pro-
vided to extend the daylight period up to 12 h. Prior to the measurements the plants
were transferred to a climate-regulated walk-in growth chamber of the phytotron in the
University’s Botanical Institute, and adapted for at least two days to a controlled 12 h
dark and 12 h light period at 21 °C and 28 °C, respectively.

Gas exchange measurements: The measurements of net CO, exchange were performed
in a climate-regulated chamber of the phytotron, as previously described (LUTTGE and
BECK 1992, RASCHER et al. 1998). Net CO, exchange was recorded using the minicuv-
ette system of H. Walz (Effeltrich, Germany). A mature leaf of a plant was enclosed in
the gas exchange cuvette while remaining attached to the plant. For a better control of
leaf temperature, the thermistor inside the cuvette was carefully attached to the lower
side of the leaf. Thus, leaf temperature rather than air temperature was exactly regu-
lated. Gas exchange data were recorded every 5 minutes using a PC and a datalogger
program. The relative humidity of the air inside the cuvette was set at 60 £ 5% and
was held constant. Irradiance was measured in the range of 400-700 nm using a LICOR
quantum sensor. Conditions inside the phytochamber were adapted to conditions inside
the gas exchange cuvette. Net CO, exchange rate (JCO,) was calculated according to
FARQUHAR and SHARKEY (1982).

Chlorophyll fluorescence imaging: To record the relative quantum yield (¢psy) of photo-
system II, a highly sensitive digital-camera system was developed to record fluorescence
signal of chlorophyll a. The core element is a Peltier cooled digital CCD camera (AP-1,
Apogee Instruments Inc., Tucson, USA), which yields intensity images with 14 bit gray
resolution on an array of 768 x 512 pixels. In front of the camera lens a specific cut-off
filter (RG655, Fa. Schott, Mainz, Germany) was mounted. The camera was controlled by
a PC, images were captured every 20 minutes and transferred to the PC. Light was pro-
vided by eight 250W halogen lamps (ENH 120V 250W, Sylvania, Japan), which were
mounted in an air-cooled chassis (Dicrolight, Fa. JBSYSTEMS, Germany) and provid-
ing a homogeneous illumination over the whole leaf. To selectively measure the fluores-
cence signal, two filters were mounted in front of the light sources: an infrared cut-off
filter (KG-1, Fa. Schott, Mainz, Germany) and a blue-green cut-off filter (No. 9782 4-96
blue-green, Fa Corning Inc., Jamaica, USA). Light intensity was controlled by the person-
al computer. During the experimental run actinic light intensity was set to different light
intensities and held constant. In order to insure a constant light intensity, voltage was
stabilized (stabilizer M208L, IREM SpA, Borgone, Italy).

Effective quantum yield of photosynthesis was recorded according to the saturating
light pulse method (GENTY et al. 1989, SCHREIBER et al. 1996). A first fluorescence pic-
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ture, named ‘LOW-picture’, was captured during constant light intensity. Subsequently a
saturating light pulse (intensity ~ 1500 pmol m> s~', duration 1 s) was applied over the
whole leaf. At the end of this pulse the second fluorescence picture (‘HIGH-picture’),
was captured. Relative quantum yield of PSII: ¢ps;; = (HIGH — LOW)/HIGH, was quan-
tified for every pixel of the image, by a computer program (RASCHER 2001).

The values obtained for every pixel were integrated over the leaf in order to obtain
the mean value of relative quantum efficiency of a single picture, named [ ¢psy. The
maximum f ¢psn of a time series was set to 1, all other values of relative quantum effi-
ciency were than scaled to this value. The experimental set-up did not allow to quantify
effective quantum yield of PSII numerically, as the system does not operate in a pulsed
mode (SCHREIBER et al. 1996). However, within the range of experimental light intensi-
ties data obtained by this method were linearly correlated to data measured with the
established PAM-measurements (SCHREIBER and BILGER 1993). For a detailed descrip-
tion of the experimental fluorescence set-up see RASCHER (2001).

2.2 Diurnal Day-Night Cycle

The diurnal changes of gas-exchange of Kalanchoé¢ daigremontiana show the character-
istic CAM pattern with four distinct phases (Fig. 1). Just as the gas-exchange pattern
changes with time, f ¢psnt shows lowest values in the first hour after the onset of light
and a distinct drop at the transition from phase III to phase IV (Fig. 1). In addition to
these temporal changes, maps of ¢pgy reveal various patterns of spatial variations
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Fig. 1 Light period of the diurnal CAM cycle with net CO, exchange rate (JCO,, ) and quantum yield
of photosynthesis (¢psy, —O-) of an attached leaf of Kalanchoé daigremontiana measured simulateneously
in a climate-regulated cuvette. [ ¢psy is obtained by integrating over the leaf area imaged and shown in
Fig. 2. Capital letters indicate the time at which maps of Fig. 2 were taken. Experimental conditions were
28 °C and 257 pmol photons m~> s~'; black and white bars indicate dark and light period, respectively. (Data
from RASCHER et al. 2001.)
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Fig.2 Spatiotemporal heterogeneity of photosynthetic efficiency (¢psyy) in a leaf of Kalanchoé daigre-
montiana during the light period of the diurnal day/night CAM cycle. Maps of ¢psyy were captured at the
times denoted by capital letters in Fig. 1. ¢ps;; Was imaged by non-invasive chlorophyll fluorescence meas-
urements at 20-minutes intervals and was normalized to the maximum f ¢psi obtained during the experi-
ment, colours code for different efficiency values (see colour code at the lower right). (Data from RASCHER
et al. 2001.)

372 Nova Acta Leopoldina NF 88, Nr. 332, S. 367-380



Imaging and Imagining Spatiotemporal Variations of Photosynthesis on Simple Leaves

Fig.3 Maps of photosynthetic efficiency (¢psy), showing two wavefronts, which meet and then disappear
rather than reforming. Subsequent pictures were taken in 20-minutes intervals; experimental conditions and
colour codes are the same as in Fig. 2. The arrows indicate the direction of the wavefronts.
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Fig. 4 Endogenous rhythm of net CO, exchange rate (JCO,, A) and f ¢psi averaged over the entire leaf (B)
in continuous light. Experimental conditions were the same as in Fig. 1, but leaf temperature was 21 °C and
light intensity 194 pmol photons m~ s™'. Hatched bars indicate where a dark period would have occurred in

the normal day/night cycle. The capital letters indicate the times, at which maps of ¢psy are shown in Fig. 5.
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(Fig. 2). Distinct small scale heterogeneity of ¢pgyy is visible during the first hour after
the onset of light (Fig. 2A, B), ¢psnt is homogeneously distributed during midday (phase
IIT), when JCO, is minimal and leaf-internal CO, concentrations are high (Fig. 2 C-F).
At the transition from phase III to phase IV, wavefronts of high ¢pg are initiated at the
lower (Fig. 2 H) and the upper half (Fig. 21) of the leaf. These wavefronts expand with a
constant velocity and may run over the entire leaf. Wavefronts which happen to meet
each other do not superimpose but rather extinguish each other (Fig. 3).

100 mm q)Psn(reI-) — -

0.94 0,96 0,98 1,00 1,02

Fig.5 Spatiotemporal heterogeneity of photosynthetic efficiency (¢psyy) in a leaf of Kalanchoé daigre-
montiana during the endogenous, circadian rhythm in continuous light. Two types of heterogeneity can be
distinguished as denoted in the text. Type (i): panels A — F; type (ii); panels G-1. Panels K and L are enlarge-
ments of type (i) and type (ii) patchiness, respectively. Maps were taken at the times denoted by capital let-
ters in Fig. 4. ¢psyy was imaged by non-invasive chlorophyll fluorescence measurements at 20-minutes inter-
vals and is normalized to the maximum obtained during the experiment, colors code for different efficiency
values (see color code at the lower right).
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2.3. Endogenous Rhythm

Distinct spatial variations of ¢pgyy are detected by chlorophyll fluorescence imaging dur-
ing the endogenous CAM rhythm of net CO, exchange. Net CO, exchange rate (JCO,)
and photosynthetic efficiency (¢psr) both show a closely correlated temporal develop-
ment (Fig. 4). They are governed by spatial variations of ¢psy, Which can be divided
into two types.

(i) The first type only appears at the transition from maximum to minimum JCO, or
¢psi, respectively (Fig. 5, panels A-F). These patches occur as fine cloud-like struc-
tures (Fig. 5, enlargement-panel K) of high ¢psy;, which emerge out of a homogenous
tissue. Closer investigation of the underlying mechanisms revealed that neighbouring
patches decouple, and exhibit a phase shift during the transition phase (RASCHER et
al. 2001).

(i) The second type of heterogeneity occurs after a few days in continuous light (Fig. 5,
panel G-I). Isolated patches cease to oscillate or are phase shifted and occur as areas
of low ¢psii. They may appear at various spots upon the leaf, widen with time under

JCO, (umol m2s™)

I¢ psiI (rel.)

0 1 2 3 4 5
days in continuous light (d)

Fig. 6 Arrhythmic net CO, exchange rate (JCO,, A) and f ¢psn1 averaged over the entire leaf (B) in contin-
uous light at constant higher leaf temperature. Leaf temperature was 28 °C and light intensity 201 pmol
photons m~ s~'. Hatched bars indicate where a dark period would occur in normal day-night cycle. The cap-
ital letters indicate the times, at which maps of ¢pgy are shown in Fig. 7.
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constant conditions and may exhibit interesting borderlines (Fig. 5, enlargement-pan-
el L). For a more detailed description of these phenomena see RASCHER (2001) and
RASCHER et al. (2001).

2.4 Arrhythmic Gas Exchange

Spatial heterogeneity was hypothesized to occur during the arrhythmic gas exchange
pattern of CAM in continuous light at higher temperatures. Mathematical model formu-
lations (BECK et al. 2001) and experimental investigations of the abolition and restora-
tion of the endogenous rhythm (RASCHER et al. 1998) suggested a spatial decoupling of
individual oscillators. These predictions could not be verified experimentally. However,
photosynthesis of leaves of Kalanchoé daigremontiana is by no means homogeneously
distributed during the arrhythmic regime. ¢psyr shows spatial differences during the ar-
rhythmic gas exchange at constant high temperatures (28 °C, Figs. 6 and 7), and during a

Fig. 7 Spatiotemporal heterogeneity of photosynthetic efficiency (¢psn) in a leaf of Kalanchoé daigre-
montiana during the arrhythmic gas exchange regime at constant temperature (28 °C) in continuous light.
Maps were taken at the times denoted by capital letters in Fig. 6. ¢psy; was imaged by non-invasive chloro-
phyll fluorescence measurements at 20-minutes intervals and is normalized to the maximum obtained dur-
ing the experiment, colors code for different efficiency values (see color code at the lower right).
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gradual reduction of leaf temperature from the arrhythmic to the rhythmic regime (31 °C
to 24 °C, Figs. 8 and 9). The arrhythmic gas exchange, measured over the whole leaf, can
be maintained even within a rhythmic temperature regime, if leaf temperature is reduced
slowly (RASCHER et al. 1998). It was proposed that during and after a so called “tem-
perature ramp”, individual, spatially arranged oscillators may underlie gas-exchange ar-
rhythmicity (BEck et al. 2001).

However, no individual oscillators, which may exhibit circadian oscillations, were
found during our measurements. ¢psy; changed in time and space, but no correlation
between the arrhythmic changes of JCO, (Figs. 6 and 8, panels A) and ¢psy (Figs. 6
and 8, panels B) was found (RascHER 2001). Spatial variations of ¢pgy; during the ar-
rhythmic regime were small in comparison to the differences during the diurnal day/
night cycle or during the endogenous rhythm (see color codes in Figs. 2, 3 and 5 versus
7 and 9).
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Fig. 8 Arrhythmic net CO, exchange rate (JCO,, A) and j ¢psn1 averaged over the entire leaf (B) in contin-
uous light before and during a gentle reduction of leaf temperature. Leaf temperature was 31 °C and then
was gradually reduced (0.5 °C every 4 h) until 24 °C; light intensity was 201 pmol photons m~> s~ Hatched
bars indicate where a dark period would have occurred in the normal day-night cycle. The capital letters in-
dicate the times, at which maps of ¢pgy; are shown in Fig. 9.
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Fig. 9 Spatiotemporal heterogeneity of photosynthetic efficiency (¢psy) in a leaf of Kalanchoé daigre-
montiana before and during a gentle reduction of leaf temperature (31 °C ? 24 °C) in continuous light. Maps
were taken at the times denoted by capital letters in Fig. 8. ¢ps;y was imaged by non-invasive chlorophyll
fluorescence measurements at 20-minutes intervals and is normalized to the maximum obtained during the
experiment, colors code for different efficiency values (see color code at the lower right).

3. Conclusion

“Simple” leaves, which were regarded to have only a vertical stratification may also
show various horizontal variations of physiological parameters. In fact, the light re-
sponse of photosynthesis, which is a highly regulated biophysical process, may be het-
erogeneously distributed over leaves. Chlorophyll fluorescence imaging has become a
powerful tool to reveal such spatial variations. Various external factors, such as herbi-
cides and light intensity have a strong influence on the quantum efficiency and render
leaves to become heterogeneous. In addition internal, physiological factors, such as dif-
ferent concentrations of metabolites can cause spatial heterogeneity. One example of
dynamic heterogeneity of photosynthetic efficiency is the endogenous, circadian CAM
rhythm of Kalanchoé daigremontiana, during which various spatial pattern formations
were observed under controlled and constant external conditions.
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The Effect of Biological Variability on
Spatiotemporal Patterns — Model Simulations
for a Network of Biochemical Oscillators
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Abstract

Noise has an important effect on spatiotemporal patterns in biological systems. In contrast to noise, biologi-
cal variability (or disorder) is a static system property. Nevertheless, it can have dynamical implications, as
the magnitude and the statistical properties of the biological variability influence the capabilities of the ele-
ments to synchronize or form patterns. We study such influences in a chain of coupled nonlinear oscillators,
each of which can be thought of as a simple form of oscillating biochemical reaction. It is seen that under
certain conditions an increase in variability can induce spatial waves and complex spatiotemporal patterns.
Some properties of the different patterns are discussed and their dependence on the system’s parameters is
studied. In particular, it is seen that the mutual information quantifying the complexity of the spatiotemporal
patterns can depend resonantly on variability. As an outlook, tools for the analysis of such patterns are out-
lined, which may help to identify similar phenomena in nature.

Zusammenfassung

Rauschen iibt einen wichtigen Einflufl auf raumzeitliche Muster biologischer Systeme aus. Im Vergleich zu
Rauschen stellt biologische Variabilitit (oder Ungeordnetheit) eine statische Systemeigenschaft dar. Den-
noch kann Variabilitdt dynamische Implikationen haben, da ihre Grofe und statistischen Eigenschaften die
Fahigkeit der Elemente beeinflussen, sich zu synchronisieren und Muster zu bilden. Wir untersuchen solche
Einfliisse in einer Kette gekoppelter nichtlinearer Oszillatoren, von denen jeder als eine einfache oszillieren-
de biochemische Reaktion aufgefalit werden kann. Es zeigt sich, daf} Variabilitidt unter bestimmten Bedin-
gungen rdumliche Wellen und komplexe raumzeitliche Strukturen induzieren kann. Eigenschaften dieser
Strukturen werden diskutiert und ihre Abhingigkeit von den Systemparametern wird untersucht. Insbeson-
dere zeigt sich, daf} die Transinformation als Ma8 fiir die Komplexitat der raumzeitlichen Muster einen reso-
nanzformigen Verlauf mit der Variabilitit haben kann. Im Ausblick werden Werkzeuge skizziert, mit denen
es moglich sein sollte, dhnliche Phdnomene in der Natur nachzuweisen.

1. Introduction

A characteristic feature of (self-organized) spatiotemporal patterns in biology is that
local (e.g. nearest-neighbor) interactions determine the time development of the indi-
vidual elements and, in turn, lead to patterns on a large scale (compared to the size of

1 Bioinformatics Group, Department of Biology, Darmstadt University of Technology, 64287 Darmstadt.
2 Institute of Applied Physics, Darmstadt University of Technology, 64289 Darmstadt.
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a single element). Often these patterns emerge abruptly, when a critical value of a
(slowly drifting) control parameter is passed (see, e.g., KELso 1995, SoLE et al.
1992, BAr-YAM 1997). Many such processes of biological self-organization can be bet-
ter understood with the help of mathematical models based upon coupled nonlinear
oscillators. In such models cooperative behavior of many interacting elements, in partic-
ular synchronization and the loss of synchronization when internal parameters or ex-
ternal conditions are changed, can be studied and related to biological observation. The
precise conditions leading to synchronization of two or more oscillators have been ex-
tensively investigated in the last decades (see, e.g., PIKOVSKY et al. 2001 for a recent
account of the long history of this research). It is, however, not well understood, to
what extent biological variability influences processes of pattern formation and self-
organization, or, more specifically, to what extent dynamical function can be attributed
to variability. Some theoretical investigations have shown that introducing variability is
not only important for a better quantitative reproduction of experimental findings, but
rather that in many cases variability might play an essential role in achieving a quali-
tative understanding of the processes at hand. The corresponding theoretical approaches
range from variability as a driving force in evolutionary processes (LLOYD and GOULD
1993) to the generation of endogenous circadian oscillations from fast dynamics (SHIN-
BROT and SCARBROUGH 1999). The vast field of research on synchronization in net-
works of nonlinear oscillators under the influence of stochastic contributions is de-
scribed, e.g., from the point of view of synchronization (Pikovsky et al. 2001) and
from the network point of view (STROGATZ 2001).

Our main question, how a parameter distribution influences synchronization proper-
ties of interacting nonlinear elements, has started to be addressed with the pioneering
work of KuramoTo (1984) on phase oscillators and has become a major topic in non-
linear dynamics (see, e. g., STROGATZ 2000 for a review on continuations of KURAMO-
T10’S model). The influence of such variability has also been studied for the Ising mod-
el (McCoy and Wu 1973). MATTHEWS and STROGATZ (1990) have discussed variability
(or “disorder” in their terminology) in a chain of limit-cycle oscillators. Its effect on
spatiotemporal chaos has been studied by LINDNER et al. (1997), BRAIMAN et al.
(1995) and GAVRIELIDES et al. (1998). Only few studies, however, focus on the biolog-
ical or ecological implications of variability and its influence on spatiotemporal dy-
namics. One example is the work by SHINBROT and SCARBROUGH (1999). There it is
discussed, how rhythms with a long time constant (e.g. circadian oscillations) can be
generated by many elements oscillating with high frequency. Their main result is that
variability leads to the appearance of oscillations with longer time constants. They give
an explicit model, where an additive variability term regulates the time constant of the
slow oscillation. Another example is the work by GUARDIOLA et al. (2000). These
authors investigate how network topology influences the synchronization properties
within a network of pulse-coupled FitzHugh-Nagumo oscillators. They vary the num-
ber of random links between oscillators and compare the resulting dynamics with a
regular network of oscillators, where they introduce some variability. Their key result
is that topological irregularity (number of random connections) and variability in a
model parameter (or “population diversity” in their terminology) have a very similar
effect on the dynamics of the network. Other work acknowledges the function of varia-
bility in dynamical systems from a more descriptive level (see, e.g., KEELING and
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GRENFELL 1997). LLoyD and GouLD (1993) have emphasized that variability could be
an important evolutionary trait, where selection could take place on the level of popu-
lation, rather than only on the level of individuals. Apart from such theoretical investi-
gation, a wide range of experimental work points out possible functional roles of bio-
logical variability in biological, ecological and sociological processes of pattern
formation, e.g. in population dynamics (PFISTER 1998), in neurobiology (SINGER
1999) and in molecular biology (MITTAG 1996).

With the present paper, we address the dynamical consequences of variability in bio-
logical systems by studying a network of nonlinear elements with nearest-neighbor cou-
pling. In the language of synchronization, we thus look at synchronization in oscillatory
media. We show by numerical analysis that in a biologically motivated system, namely a
chain of biochemical oscillators, an increase in variability may induce spatial waves and
long-range spatiotemporal correlations.

2. The Model

We study a system of biochemical reactions given by the following set of differential
equations:
dX a dY dz kiZ
X = Y

d K+zZ 7 a T w T K+7Z
where the three dynamical variables X, Y and Z can be thought of as (time-dependent)
concentrations of some biochemically active substances. The first substance X goes over
into a substance Y, which is transformed into a third substance Z. This last component, Z,
inhibits the formation of X and is itself enzymatically depleted. These two properties of
Z represent the two nonlinearities in the system, regulated by the two parameters a and
k1, respectively. The parameter k, regulating the onset of inhibition will be kept constant
(ko = 0.001) throughout this investigation. This system has first been introduced and stud-
ied by THRON (1991) with the aim to formulate a minimal system of biochemical oscil-
lation. Figure 1 A gives a schematic view by graphically representing the major regula-
tory elements. Such a system of biochemical reactions with backward inhibition is one of
the simplest biologically motivated oscillatory systems. Later, BAIER and SAHLE (1998)
used this system as a starting point for studying spatiotemporal patterns by coupling
these Thron oscillators in one and two spatial dimensions. Recently we have investi-
gated, how colored noise influences pattern formation in such a network of Thron oscil-
lators (BuscH et al. 2001). In the following, we first look at the dynamics of the individ-
ual oscillator and then later, in Section 3.2, we will turn to a chain of coupled oscillators.
The dynamical variables X(f), Y(¢) and Z(¢) display an oscillatory behavior in a certain
region of the (a—k;)-plane, which arises via a Hopf bifurcation, when a critical value in
one of these two parameters is passed. Figure 1 B shows the time development of X(7) for
different values of the bifurcation parameter k;. Above the critical value a stable oscilla-
tion occurs. Later, we will introduce biological variability as a distribution in one of
these bifurcation parameters. Thus, it is important to understand the dynamics of the
individual oscillator in more detail. From the differential equations, one can immedi-
ately compute the position of the fixed point as a function of k; and a, as well as the

(1]

Nova Acta Leopoldina NF 88, Nr. 332, S. 381-400 383



Marc-Thorsten Hiitt, Hauke Busch, and Friedemann Kaiser

A

X X X .
ke 7
| k1=0.41 7| k1=0.45 kt
128 12 e
orst L 07s
02: b/ AVAVAVAVSS 0"2: L\J] \“,-'\j'\ll“u"\f‘ VAVAVAVAVAVL VN Qg
EO— ¢ W W R P Tod
1.7: k1=0.43 {T;
15 K1=U. 5| k1=0.47
125 1.25
1
o7s 073 FER R
f \ \ | s
S M s MWW
_"2'0_1'(5'tfl?j_'é'o'_'Tok _"El_"ﬁ_t'mld

06

05

04

0.3

parameter a

02 :

0.1

i S
0 025 05 075 1. 1.25 15 1.75 2.
parameter k,

Fig. 1 Description of the Thron system. (A) Schematic view of the individual oscillator with the two non-
linear regulatory elements, namely inhibition [-] and enzymatic depletion [E]. (B) Typical time develop-
ment of the X-variable in the vicinity of the Hopf bifurcation. Time is shown in dimensionless units. The
parameter a has been set to a = 0.11. Here and in the following the parameter k is set to ko= 0.001. (C)
Phase diagram for a single Thron oscillator. The line shows the location of the Hopf bifurcation as a func-
tion of the two bifurcation parameters a and k.
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eigenvalues governing the stability of the steady state. One can then calculate the zeroes
of the real part of the complex eigenvalues as a function of the two parameters. From this
result one obtains the bifurcation line separating the fixed-point regime from the oscilla-
tory regime in the (a—k;)-plane. This is shown in Figure 1 C. The point in parameter
space, which corresponds to the bifurcation illustrated in Figure 1 B is indicated by the
dot. The main dynamical feature of interest in the oscillatory regime is the period length,
which also depends on a and k;. Figure 2 shows some examples of this. There, the dynam-
ical regions in the (a—k;)-plane are depicted, as in Figure 1 C. In addition, for three
cases the corresponding periods of oscillation are given, namely for k; = 0.5 and 1.4 as
a function of a and for a = 0.2 as a function of k;, respectively. It is seen that, e. g., for
a=0.2 and above a certain value of k; (around k; = 0.8) the period length T decreases
almost linearly with k;. In this way for example a distribution in the parameter k; corre-
sponds to a distribution in period lengths.

— (a ky)-plane
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L k=14 13 k=05 2
3 |
i | a
5 3. |3
i ;| @
lm B it § 2
5 id i e 8 2
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8 8
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Fig.2 Dependence of the period length 7 on the bifurcation parameters a and k,. Starting from the (a—k,)-
plane three projections are considered, namely (1) k; = 1.4, (2) k; = 0.5 and (3) a = 0.2. For these projec-
tions the period length T is shown as a function of the remaining parameter (i. e. as a function of a for (1)
and (2) and of k; for (3)). Dashed lines within the phase diagram indicate the intersection chosen to display
period length. The dotted lines leading out of the phase diagram project the bifurcation points onto the peri-
od diagram. For projection (1) no bifurcation exists in the parameter range shown here. The period T has
been obtained by computing the phase ¢,, = arctan(X/Y) for a long time series (10000 time steps after a
transient of 5 000) and then counting 27 changes in ¢y, in this time interval.
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3. From the Single Oscillator to Coupled Oscillators
3.1 Example of Phase Oscillators

The previous section was devoted to studying some basic properties of the individual
Thron oscillator. In order to understand, what typical dynamics arise when oscillatory
units are coupled, it is convenient to first look at the simplest oscillatory unit, namely a
phase oscillator. The idea is to design a limit-cycle oscillator in its simplest form as a
fixed point of a radial component and an uniformly increasing phase. One then can
ignore, with good accuracy, the amplitude dynamics (given by the radial component)
and focus on the time evolution of the phase. In spite of the trivial single-oscillator dy-
namics (uniform increase of the phase with time) the coupled system is an interesting
minimal model for investigating synchronization.

For this case the effect of variability on synchronization properties has been studied
extensively. KURAMOTO (1984) has shown that in the case of globally coupled phase os-
cillators with a distribution of internal frequencies the number of synchronized oscilla-
tors changes with the coupling strength in a phase-transition-like manner. The critical
coupling (i.e. the coupling strength at which the phase transition occurs) depends on
the form and width of the frequency distribution as well as on the form of the coupling
between oscillators. In more recent years, this fundamental result has been extended and
further studied, both numerically and analytically (see STROGATZ 2000 for a review). In
the case of a local (neighbor) coupling the essence of synchronization properties of
phase oscillators can be grasped by discussing a simple numerical experiment intro-
duced by Pikovsky et al. (2001). There, five phase oscillators with different internal
frequencies are locally coupled in the order of their frequencies. The explicit form of
these oscillators is given by a set of differential equations for the phases @(¢):

ddy
dt
i.e., a sinusoidal coupling to neighbors is used. Free boundary conditions are implied,
i.e., when k—1=0 or when k + 1 exceeds the number of oscillators the corresponding
coupling term is omitted. The effective (relative) frequencies given by

Q. = (dPy/dt) (3]

are then monitored as a function of the coupling strength ¢ (braces denote time average).
Figure 3 shows this relation for a certain choice of internal frequencies @y. In Figure 3 A
one sees, how the oscillators, one after the other, are drawn into a synchronized cluster.
Above a certain coupling strength all oscillators are synchronized. If more oscillators are
added to this picture (Fig. 3 B and C) without changing the range of internal frequencies
and without scaling the coupling strength, one observes that synchronization is shifted to
higher values of ¢ (actually, it is known that using &/N as a coupling strength, where N is
the number of oscillators, accounts for this shift). In addition, in the intermediate regime,
where few oscillators are synchronized, an oscillator may leave one cluster and join an-
other. Otherwise, the situation remains the same. Note that the situation depicted in
Figure 3 is somewhat artificial, as the oscillators are arranged with respect to the size
of their natural (internal) frequencies. Nevertheless, the characteristic features of the
time development, in particular the formation of ever fewer, ever larger clusters with

= wy + esin(Dy_; — D) + esin(Pyy — Dy), [2]
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Fig. 4 Typical clusters of phase oscillators for different values of the coupling constant ¢. In the diagram
from Figure 3A displaying the effective frequencies of 5 phase oscillators as a function of the coupling con-
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increasing coupling, is also found, when one studies an ensemble of phase oscillators
arranged randomly on a chain with respect to their natural frequencies. A schematic ex-
ample for 20 phase oscillators is given in Figure 4. There the time developments of 20
phase oscillators is shown for three different values of the coupling constant &. Now the
internal frequencies are not ordered along the chain as for Figure 3, but they have been
selected randomly between —2 and 2. It is seen that the general scheme (small coupling —
few oscillators are synchronized, intermediate coupling — neighboring oscillators are
synchronized and form clusters, large coupling — large clusters or full synchronization
of all oscillators), which is summarized in Figure 4 A, is also found for the chain with
randomized frequencies (Fig. 4 B).

3.2 A Chain of Coupled Thron Oscillators

When one attempts to reproduce this scenario for Thron oscillators, one finds that amplitude
dynamics keep the system from such simple synchronization behavior. In order to illustrate
this we couple the Thron oscillators diffusively in one of the dynamical variables as shown
schematically in Figure 5. Coupling in the Z-pool leads to an additional term

+DAZisy + Zi 1 —22) [4]
- |
PIX Y >z individual oscillator
- 1Jp
X >y >z
— 1o et i 8
P XY >z 3:1 ::;;wmﬁ

Fig.5 Coupling scheme of the Thron oscillators. We consider a linear open chain of the oscillators de-
picted in Fig. 1 A with a diffusive coupling in the Z-variable.
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Fig. 6 Effective period T as a function of the diffusion constant D for coupled Thron oscillators. The cor-
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in the differential Equation [1] for the Z-variable of the i-th oscillator. In a similar nu-
merical experiment as the one behind Figure 3 A, we can now study the synchronization
properties of five Thron oscillators at fixed a with different values of k;. As for Figure 3,
the oscillators are arranged corresponding to their k-values. Then time developments of
this “chain” are simulated and the periods are extracted. This is done over a wide range
of the diffusion constant D. The results are shown in Figure 6 for two values of a. The
ky-values for the five oscillators are depicted in Figure 6 A in the (a—k;)-plane, as before,
while Figures 6 B and C show the effective period T as a function of coupling D,. In
Figure 6 B it is seen that although the Thron oscillators synchronize their behavior at
high coupling, large deviations from the common period of the synchronized cluster are
possible over a certain range in Dy The situation depicted in Figure 6 C is somewhat
clearer, as for this choice of a, while keeping the previous values of k;, two of the oscil-
lators are in their fixed-point regime (marked F1 and F2 in Fig. 6 A). At a certain cou-
pling, which depends on the distance from the bifurcation line, these oscillators are
drawn into the synchronized cluster.

4. Effect of Variability
4.1 Variability-induced Patterns

If many oscillators are coupled to a chain, synchronization properties can be discussed in
terms of properties of the spatiotemporal pattern produced by this chain. After the nu-
merical experiment of the previous section, we can now turn to a more systematic study
of variability on the basis of spatiotemporal patterns in a chain of Thron oscillators. For
the case of identical Thron oscillators (i.e. a system without variability) an example of
such a pattern is given in Figure 7 at zero variability (upper left space-time diagram),
where the Z-value of 20 oscillators is plotted in grey-scale coding as a function of time.
Starting from random initial conditions the oscillators synchronize their oscillation after
a few time steps. This situation changes drastically, when variability is introduced. To
this end we choose the value of the parameter k; for each oscillator individually from
a distribution with width v. In the following, this quantity v is called the size of variabil-
ity (or simply variability). The parameter k{” of the i-th oscillator in the chain can then
be written as

KD = ki (14 vp,) (5]

where 7; is a random number uniformly distributed in the interval [0, 1]. Note that these
values k{” do not change with time. They describe natural differences between the dynam-
ical units as a static property of the system. Figure 7 shows typical spatiotemporal pat-
terns for a chain of 30 Thron oscillators in the limit-cycle regime for different values of
the variability v. Even for small v a significant change in the pattern is observed (com-
pared to the case without variability, v = 0, shown in the first diagram in Fig. 7). Spatial
waves are present in the system in addition to the oscillation of the elements with time.
The complexity of the patterns increases with v and one observes patterns involving
much longer scales in space and time than only a few elements and time steps. Results
for a larger chain (128 oscillators) with longer time series are shown in Figure 8, where
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the long-range patterns induced by variability are seen more clearly. Again, the change
from spatial waves to complex spatiotemporal patterns is obvious. At intermediate v one
finds synchronized clusters slowly increasing or decreasing in size. Similar patterns
arise, when variability is introduced in the parameter a. We also found that when one
passes to the regime, where the period T decreases almost linearly with k; (i.e.
ky > 0.8) the appearance of spatial waves at low nonzero variability disappears and com-
plex patterns emerge abruptly, as soon as a certain value of v is passed (data not shown).

4.2 Quantification of Variability-induced Patterns

The structures shown in Figures 7 and 8 suggest a certain systematics behind the effect
of variability on the synchronization properties of these oscillators. Variability seems to
carry patterns from regular to complex and then, when increased further, to less complex.
In order to quantify this visual impression that has been confirmed by a variety of model
calculations varying both, the ranges of k; and the coupling constant D, we use the
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Fig. 8 Space-time diagrams for a chain of 128 Thron oscillators for different values of the variability in &,
namely (A) v = 0.05, (B) v=0.2, (C) v=0.4 and (D) v =0.9. For each value of the variability, 5000 time
steps are shown from a simulation, which has been started from random initial conditions and from which a
transient of 1000 time steps has been dropped. The parameter values have been a =0.11, D, =0.2 and
ki = 0.49 as a minimal value of the distribution in k;. The parameter k, has been fixed at 0.001. As discussed
in the text the width of the distribution is given by the variability v.
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mutual information /, which is known to provide an efficient measure of pattern com-

plexity.
The mutual information is defined as
Dij
I= ) pjlog (6]
Z,-j: ! PiDj
A
e OF @)
S
"g 0.15
5 o1
i
=
- 0.05}
S @ 4)
=
= ol
£ 0 0.2 0.4 0.6 0.8 1

Langton parameter A

™ @

o TR K AT

Fig. 9 (A) Mutual information / as a function of the Langton parameter /A for the case of one-dimensional
cellular automata with a neighborhood size K =5 and a state space of 4 elements. The curve is the average
over ten paths through parameter space, where each path is parameterized by 4. For each 4 a chain of 200
elements has been simulated over 300 time steps starting from initial conditions. The step size in / has been
0.001. (B) For four values of 4 (shown as dots in (A)) typical space-time diagrams of such cellular automata
are given. Here the spatial dimension is shown horizontally and time runs from downwards. The state g se-
lected for the definition of 4 is shown in black, while all other states are represented in white (Figure
adapted from HUTT 2001).
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Fig. 10 Computation of the mutual information / as a function of variability v. (A) Treatment of the space-
time data before applying the definition of /. First, in order to eliminate the fast oscillation underlying the
large-scale variation of the spatiotemporal pattern (a) the first peak in the (temporal) Fourier spectrum of
each oscillator is skipped (b). Next, the resulting grey-scale plot is converted into a black-and-white image
(c) by applying an average-value threshold (i.e., every value below average is mapped onto 0, every value
above is put to 1). (B) Mutual information / as a function of variability v for space-time data prepared in this
manner. The choice of parameters is the same as in Figure 8. In all cases, the space-time data have been gen-
erated with a chain of 64 oscillators, where 2000 time steps after a transient of 1000 have entered the com-
putation of /. Error bars have been generated by combining five independent runs.
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where p;; denotes the probability of finding the state j next to the state i in the spatiotem-
poral neighborhood, while p; is the probability of finding the state i.

An example of the quantifying power of complex patterns is given by LANGTON’S
analysis of cellular automata (LANGTON 1990). Let us consider one-dimensional cellular
automata with a state space consisting of N elements and a neighborhood of size K. So-
called update rules determine the state of the i-th cell at time 7 + 1 from the state of the
K-element neighborhood around the i-the cell at time ¢. The case N =2 corresponds to
binary automata, for K = 3 nearest neighbors are considered, while for K =5 next-to-
nearest neighbors are taken into account as well. It is known that such cellular automata
can produce complex spatiotemporal patterns. LANGTON defined the parameter A as the
percentage of rules mapping neighborhoods to a chosen element ¢, e. g. to zero. His hy-
pothesis was that sets of rules with a similar value of /4 lead to a similar time develop-
ment. Changing A thus defined trajectories through the rule space of cellular automata,
and even automata with more than two elements and neighborhoods larger than three
became to a certain extent comparable from this global perspective. Figure 9 gives an
example of such a behavior for cellular automata. In Figure 9 A the mutual information
I is shown as a function of the Langton parameter A. For some values of 4 typical space-
time diagrams from such cellular automata are displayed in Figure 9B. The main result
of LANGTON’S investigation is that complex spatiotemporal patterns (i. e. patterns with
long-range spatiotemporal correlations) appear at intermediate 1. The mutual informa-
tion as a function of 1 reflects this finding. The space-time diagrams given as examples
in Figure 9B illustrate how pattern complexity is accounted for by the value of the mu-
tual information.

We now adapt this analysis strategy to the variability-induced patterns in a chain of
Thron oscillators. Analyzing the patterns shown in Figures 7 and 8 with the mutual in-
formation requires (i) omitting the fast oscillation present in the space-time plots for all
values of the variability and (ii) reducing the state space of the system to, e.g., 0 and 1.
The first step is achieved by omitting the first (high-frequency) peak in the Fourier spec-
trum. For the second step we use an average-value threshold projecting a value larger
than average to 1 and a value smaller than average to 0. Figure 10 A shows these two
steps of preparing the space-time data. Starting from the original space-time diagram
(a) fast oscillations are eliminated (b) and the threshold is applied (c¢). Computing the
mutual information for such space-time data at different variability v leads to the curve
displayed in Figures 10 B, where a broad maximum of the mutual information at inter-
mediate variability is seen with a slow decrease at higher v. This result confirms the
visual impression that spatiotemporal patterns with strongest long-range correlations
appear at intermediate variability.

5. Outlook: Dynamical Function of Variability in Experimental Data

Our investigations suggest a dynamical function of variability in nonlinear systems. It
seems that variability strongly influences the complexity of space-time patterns pro-
duced by systems of diffusively coupled oscillators. It would be interesting to see,
whether part of this behavior is also found in natural systems. This, however, requires
the design of particular analysis tools capable of quantifying the size and distribution of

396 Nova Acta Leopoldina NF 88, Nr. 332, S. 381-400



The Effect of Biological Variability on Spatiotemporal Patterns

(1) () 3 4

Fig. 11 Phenomenon of spatiotemporal stochastic resonance in the Jung system described by JUNG and
MAYER-KRESS (1995). The images are typical snapshots of a 100 x 100 lattice for four different noise inten-
sities g, namely (1) ¢ =0.07, (2) 6 =0.10, (3) 0 =0.15 and (4) g = 0.35. For details on the model, see JUNG
and MAYER-KRESS (1995), HUTT et al. (2002).

variability in a given spatiotemporal data set. For the case of noise, i.e., the time-depen-
dent counterpart of the static variability, we have already developed such tools and opti-
mized them with the help of spatiotemporal data generated with mathematical models
(HUTT et al. 2002). Our main result concerns spatiotemporal stochastic resonance and
will briefly be summarized here before discussing how similar analysis strategies for
variability would look like.

The tools we use for quantifying the noise content in a spatiotemporal data set are
dynamical filters based on cellular automata considerations (HUTT and NEFF 2001). We
tested them on data from mathematical model systems displaying spatiotemporal sto-
chastic resonance. The term spatiotemporal stochastic resonance denotes a phenomenon
when patterns in a spatially extended system are most pronounced at intermediate inten-
sity of the noise present in the system. One of the main difficulties when attempting to
find this phenomenon in natural systems has been that in most cases noise intensity is not
immediately accessible by experiment (see, €. g., the contribution by Moss and BALASZI,
this volume). Our technique allows to reconstruct noise intensity from the spatiotemporal
data set itself. Figure 11 shows typical snapshots from such model data (taken from HUTT
et al. 2002), namely from a system developed by JUNG and MAYER-KRESS (1995), the
system, indeed, for which the phenomenon has first been described. It is clearly seen
that at intermediate noise intensity (in particular snapshot #2) the spiral wave propagat-
ing through the system is most clearly visible. In Figure 12 A some measure of spatial
order, the homogeneity, is plotted as a function of noise intensity. The homogeneity of
a pattern is given by the average number of equal nearest neighbors (see HUTT and NEFF
2001 for details). The characteristic feature of a spatiotemporal stochastic resonance is
the pronounced peak at intermediate noise intensity. Figure 12 B shows our attempt to
reconstruct the noise intensity from the data alone. There another spatiotemporal observ-
able, the fluctuation number, is shown as a function of the real noise intensity used to
generate the data. The monotonous relation between fluctuation number and noise inten-
sity seen in Figure 12 B allows one to reconstruct the peak seen in Figure 12 A from the
data alone, by plotting homogeneity and fluctuation number in a correlation diagram, as
shown in Figure 12 C. These tools can form a basis for identifying and quantifying varia-
bility in spatiotemporal data sets from biological systems. The idea is to design similar
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Fig. 12 Quantitative analysis of a spatiotemporal stochastic resonance using sample data from the Jung
system. The first two diagrams show two spatiotemporal filters introduced by HUTT and NEFF (2001) as a
function of noise intensity o, namely (A) the homogeneity and (B) the fluctuation number. The numbers (1)-
(4) in (A) indicate the values of ¢ for the snapshots shown in Figure 11. The third diagram (C) shows a corre-
lation diagram of these two filters. For further information on the spatiotemporal filters and this analysis,
see HUTT and NEFF (2001), HUTT et al. (2002).

filters, measuring how similar neighboring states evolve in time. Systematic differences
between the elements constituting the system can then be attributed to biological varia-
bility. A first approximation to such a filter would be a time-averaged (but spatially ex-
plicit) version of the above fluctuation number.

A fascinating model system, for which a regulation by biological variability seems
possible, is the slime mould Dictyostelium discoideum. In this model system of biologi-
cal pattern formation the individual cells aggregate under the effect of a chemotactic
signal (cAMP) and form a multicellular organism capable of migration. Variability, in
this case, could be responsible for certain stages of symmetry breaking in the usual
course of development of D. discoideum. In this particular system the single-cell param-
eter, in which variability is functionally important, could be cell motility or the respon-
siveness to a chemotactical signal.
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6. Conclusion

With the help of numerical simulation and subsequent analysis we have shown that bio-
logical variability (which enters the model as a static distribution in one of the param-
eters) can induce long-range spatiotemporal patterns. Within the model we studied,
which represents a chain of biochemical oscillators, the complexity of the patterns is
highest at intermediate variability. While the phenomenon of variability-induced pat-
terns in a chain of biologically-motivated oscillators is clearly seen in the space-time
plots shown here, as well as in the consecutive quantification attempts, it is clear that
the theoretical frame needs more work to understand the systematics of this phenome-
non. Quite obviously, it would be interesting to see how patterns are changed by variabil-
ity in chains of other oscillators, both motivated from biology and otherwise. And even
for our particular oscillator the systematics of the resonance shown in Figure 10 have to
be analyzed in more detail. In particular, the relative roles of variability and coupling
need to be studied to greater extent.

In the case of chains of other oscillators, two ways are, in principle, possible. One
would be to explicitly take other (possibly also biologically motivated) systems of non-
linear differential equations, e. g. the Sel’kov system or a FitzHugh-Nagumo oscillator.
The other method would be to start from the Thron system and modify the nonlinearities
(e. g. the power in the Hill-type inhibition function). This would help to understand, in
which biological systems this phenomenon can in principle be found.

Following this way, by studying both, mathematical model systems and real data
using analysis tools optimized with the help of model data it could be possible to classi-
fy and understand the characteristic response scheme of biological systems to variability.
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Synopsis

Friedrich BEck and Ulrich LUTTGE, Academician (Darmstadt)

With 1 Figure

The main topics emerging from this symposium are nonlinear dynamics in general, sto-
chastic resonance and synchronization in their recent foremost applications in biology.
Now, the use of nonlinear models in biology as well as in chemistry is not a new inven-
tion. VERHULST introduced the logistic equation for the description of population dy-
namics in 1838, though he was not aware of (or did not dare to report on) its chaotic
solutions. LOTKA (1920) and VOLTERRA (1926) opened with their feed-back model for
predator and prey cycles the use of nonlinear rate equations in biological and chemical
modeling. And, Robert MAy with his famous paper of 1976 on the logistic equation, as
well as the later mathematical analysis by GROSSMANN and THoMmAs (1977), and
FEIGENBAUM (1978), showed the richness in the solution manifold of this simple
equation.

So, what is the new wisdom which makes the liaison between nonlinear dynamics
and biology so fascinating? Structural biology was confronted with a vast amount of
data, accumulated with new and refined experimental achievements. How can one deal
with this situation? The choice of the hour was, naturally, molecular biology. In biology
we now live in an era of “~omics”. Technical breakthroughs take us in an ever accelerat-
ing pace of acquisition of information with genomics, proteomics, metabolomics ... and
“channelomics”, a new band waggon-term heard during this symposium. We need help
for advancing from administration of these mountains of data to conceptual understand-
ing, i.e. from description to explanation. Such rescue can come from theory. Construc-
tion of networks and systems of super-networks can assist in getting overview and out-
look (e.g., WATTs 1999, HUTT and LUTTGE 2002). In the vein of our foreword, the
concepts of nonlinear dynamics of physics to be merged with spatiotemporal biology as
treated in this Symposium can lead the way. Only recently, and winning general ac-
knowledgement rather slowly, it is realized that it is not enough to concentrate on the
molecular structure of genes and their regulating power in cell performance alone, but
that it is the whole spatiotemporal nonlinear dynamics of interacting cell agglomera-
tions which is responsible for the behavior and conduct of living organisms. Here, the
whole richness, variety and complexity of nonlinear systems come into play, as well as
the fine-tuning of noise-enhanced signaling and the precise conditions for synchroniza-
tion within a system. This Symposium offered a wealth of sometimes rather astonishing
new findings along these lines.
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Key elements of nonlinear dynamics emerging as a focus from the Symposium are oscil-
lations, temporal and spatial synchronization/desynchronization and noise (Fig. 1). Os-
cillations scale from ultradian to circadian (LUTTGE 2002, LUTTGE and HUTT 2003) and
from individual enzymes to cells, organisms and populations (see contributions of
W. SINGER, M. HAUSER, F. JULICHER, H. A. BRAUN, M. MALCHOW, M. MITTAG,
U. RASCHER). Synchronization/desynchronization (see contributions of W. SINGER,
A. Pikovsky, H. A. BRAUN) scales from hopping Brownian particles (see contributions
of P. HANGGI and W. EBELING), ion channels (see contribution of G. THIEL), microal-
gae, Daphnias (see contribution of A. ORDEMANN), cells in an organ (see contribution
of U. RASCHER), neurons in a brain (see contributions of W. WAGNER , S. GRUN), devel-
opment organizers (see contribution of T. W. HOLSTEIN), sardines in a vortex (see con-
tribution of A. ORDEMANN) to plankton blooms in the ocean (see contribution of
M. MaLcHow). Noise is differentiated into environmental and endogenous. Biological
variability is, similar to the effect of noise, capable of inducing spatiotemporal patterns
in nonlinear systems (see the contribution of M.-T. HUTT).

Biology asks for positive effects driving evolution, or perhaps more explicitly, for
benefits for fitness. Oscillations and clocks allow timing. Contributions to the Sympo-
sium unraveled functions of synchronization/desynchronization and noise in movements
and transport with Brownian motors (contribution of P. HANGGI), in behavior and in the
control of diseases (contribution of P. Tass) (Fig. 1).

One irrefutable conclusion of the Symposium was that nonlinear dynamics confer
robustness to living systems. However, other questions regarding evolution and fitness
remain. There are a lot of ideas and discussions regarding beneficial and even basically
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essential functions of both ultradian (for review see LUTTGE and HUTT 2003) and cir-
cadian (for review see LUTTGE 2002) rhythmicity in signaling, information transfer and
timing in organisms. Nevertheless, the question still remains open, if they may not be
just unavoidable by-products of nonlinear regulation dynamics. With respect to noise,
with the newly developing insights in the impact of noise-induced structures and sto-
chastic resonance on biological systems, the question becomes even more intriguing.
Has evolution of organisms over billions of years under the non-escapable influence
of thermal noise led to the selection of traits that are irreplaceably dependent on the
noise?

Frank Moss, in the final discussion of the Symposium, elaborated this question as
follows, with reference to sensory evolution in animals: “Many animals have evolved
surprisingly sensitive apparatus, some of which are as yet unrivalled by human engineer-
ing. Notable examples include the legendary electric field sensitivity of a few nanovolts
per centimetre, of sharks and rays (KaLmunN 2000), one half-to-one microvolt per cm of
freshwater cat- and paddle-fish (RUSSELL et al. 1999) and the remarkable sensitivity to
seismic amplitudes of only a few Angstroms by some frogs (NARINS and LEwis 1984,
NARINS 1990). Certainly the ability to detect ever weaker signals from predators, prey
or potential mates is advantageous and therefore is selected for. Thus, weak signals at
the threshold of perception drive the evolution of sensory nervous systems. Experiments
with behaving animals (RUSSELL et al. 1999) have demonstrated that the detectability of
such signals can be enhanced by Stochastic Resonance (SR), and we therefore expect it
to have played a role in the evolution of sensory systems. SR requires three ingredients, a
threshold, a subthreshold signal and noise, ingredients that are ubiquitous in the natural
world, most especially in the world of animal perception. Indeed, the evolution of the
long, electrically sensitive rostrum of the paddlefish is a textbook example. The rostrum
grew longer and the electric sensitivity grew sharper as the animal’s continued survival
was enhanced by its ability to ‘reach out’ and perceive ever weaker signals from ever
more distant planktonic prey.” (See contributions by FREUND et al. and Moss.) “Though
this argument seems attractive, it is alas only speculative. There is, however, one experi-
ment that offers compelling evidence of a role for SR in sensory evolution. Using experi-
mental techniques similar to those described by JULICHER in this volume, JARAMILLO and
WIESENFELD (1998) were able to mechanically manipulate hair bundles in the ear of a
leopard frog at the sub-Brownian motion level while measuring the signal-to-noise ratio
(SNR) of the corresponding discharge in the auditory neuron. They performed a classical
SR experiment by adding a controlled amount of noise to subthreshold periodic motion
of the hair bundle while measuring the SNR in the auditory nerve. They found, of course,
the standard signature of SR: the SNR passed through a maximum at the optimum value
of the noise intensity. What is remarkable is that the optimum noise found by JARAMILLO
and WIESENFELD (1998), 2.5 — 0.5 nm r. m. s., was precisely in the midrange of the pre-
viously determined natural Brownian motion about 2 —3 nm r. m.s. of the hair bundle
moving in the cochlear fluid. Brownian motion is natural noise arising from thermal
fluctuations present throughout the evolution of life on this planet. This experiment
provides direct evidence that the mechanical properties of the hair bundles in the frog
auditory system evolved in order to make use of SR at the threshold of perception.”

There were some specific points from the various contributions, raised again in the
synopsis discussion for further clarification:
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Stochastic resonance is often explained qualitatively and pictorially as a subthreshold
signal, pushed by internal noise above threshold, and, for a suitable window in the noise
strength, enhancing the signal to noise ratio (SNR). Noise and signal amplitudes are
added linearly, while stochastic resonance occurs in nonlinear systems only. Where en-
ters the role of nonlinearity in this simple picture? It is the nonlinear production of the
threshold in non-dynamical stochastic resonance of a system to which the external signal
is applied.

In coordinated motion of swarms of animals, resulting from random walks of the
individuals, e. g., the observed vortex motion of Daphnias around an external shaft of
light (see contribution of A. ORDEMANN, see also the contribution of W. EBELING), the
question arises where the breaking of rotational symmetry occurs. It is clear that such a
vortex motion cannot occur in a closed system. There has to be a substrate (in the case of
the quoted example the water) which takes up the angular momentum generated sponta-
neously by random motion. If the substrate is massive enough, the compensation needed
for fulfilling the angular momentum conservation law can hardly be observed.

In stochastic resonance noise tuning is essential in order to obtain the amplitude
window for which enhancement of SNR occurs. In biological systems, however, noise
level and noise color are generally fixed by external control parameters (e.g. tempera-
ture) and internal dynamics. How can such a system profit in signal recognition from
stochastic resonance? Is there an internal regulating mechanism (eventually produced in
the process of evolution)? The question seems to be open at present. There is, however,
an intriguing aspect, discussed in the contribution of H. KaNTZ, that the fast dynamics,
not explicitly described on the time scale of interest, can be replaced by a fluctuation
term in the Liouville equation. This also relates to Frank Moss’ extensive contribution
to the question of noise sensitivity, quoted above.

The role of deterministic chaos in biology is not yet clear. Unique identifications
from time series analysis are often not possible since the amount of data, especially in
diurnal rhythms, is not sufficiently large. Special care is needed since the interplay of
noise, limit cycles and nearby fixed points can lead to irregular oscillations without
chaos. Such situations can be effectively analyzed by adding noise in the Fokker-Planck
equation (see contribution of H. KANTZ).

Modeling of biological processes is based completely on classical dynamics and clas-
sical mechanics. Could quantum processes show up significantly in biological systems?
The general answer is no. The belief stems from the fact that noise, even if only thermal,
destroys quantum coherence completely. One should, however, not rashly be consoled
with this answer. In membrane processes electron transfer and quantum tunneling can
play an important role for ion channel openings and signal transduction (as has been
shown, e. g., for photobacteria in femtosecond spectroscopy; see also the contributions
of P. HANGGI and T. DITTRICH). Molecular biology works generally with time scales
down to nanoseconds. Quantum processes, which have to be in the time scale of pico-
to femtoseconds in order to stay above thermal noise, escape therefore detection with
present-day techniques.

This final synopsis highlighted once more important points put forward during the
Symposium. It ended with a wine reception in the happy mood that one had witnessed
three days of intriguing discussions on the most recent highlights of dynamic principles
in biology.
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